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Abstract

Cellular aging is a multifaceted complex process. Many genes and factors
have been identified that regulate cellular aging. However, how these
genes and factors interact with one another and how these interactions
drive the aging processes in single cells remain largely unclear. Recently,
computational systems biology has demonstrated its potential to empower
aging research by providing quantitative descriptions and explanations of
complex aging phenotypes, mechanistic insights into the emergent dy-
namic properties of regulatory networks, and testable predictions that can
guide the design of new experiments and interventional strategies. In
general, current complex systems approaches can be categorized into two
types: (1) network maps that depict the topologies of large-scale molecular
networks without detailed characterization of the dynamics of individual
components and (2) dynamical models that describe the temporal behavior
in a particular set of interacting factors. In this review, we discuss examples
that showcase the application of these approaches to cellular aging with a
specific focus on the progress in quantifying and modeling the replicative
aging of budding yeast Saccharomyces cerevisiae. We further propose
potential strategies for integrating network maps and dynamical models
toward a more comprehensive, mechanistic, and predictive understanding
of cellular aging. Finally, we outline directions and questions in aging
research where systems-level approaches may be especially powerful.
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1 | INTRODUCTION lifespan and aging-related functional declines have

been characterized [3—7]. Based on the investigations

Aging is a defining factor in many diseases that have
become increasingly significant global health burdens,
including neurodegeneration, cancer, and diabetes [1].
As organismal aging is prohibitively sophisticated,
much progress in understanding the basic mechanisms
of aging comes from studies of aging processes in in-
dividual cells [2]. Many genes that regulate cellular

of individual genes, proteins, and metabolites, previous
studies have advanced our understanding of aging by
delineating multiple major conserved aging pathways or
processes [5, 8-11]. Yet, understanding how these
factors and pathways interact with one another and how
these interactions operate collectively to drive the dy-
namics of aging process remains largely elusive. In
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addition, stochasticity is another important yet difficult-
to-study factor that underlies the different rates and
phenotypes of aging among individual cells. Traditional
reductionist approaches are limited in addressing the
totality of such complexity. In recent years, computa-
tional systems biology has demonstrated its potential to
contribute to a transformation in aging research,
enabling a more systematic and quantitative view of
aging [12].

Systems-level approaches used in aging studies
can be generally categorized into two types that rely on
different technologies and provide different perspec-
tives of cellular aging. One type is referred to as
network maps. Network maps are representations of
biological networks, typically visualized as directed or
undirected graphs composed of nodes representing
factors such as genes or proteins [13]. Network maps
can be assembled based on large-scale datasets from
systematic analyses of biomolecules (e.g., DNA, RNA,
or protein expression levels or interactions) or correla-
tions in molecular profiles. These maps have been very
useful for determining the topologies of biological net-
works, such as transcriptional regulatory networks and
protein interaction networks, and for characterizing
functional biological pathways and processes [14—-16].
In the context of aging, network mapping has been
used to characterize age-dependent changes in overall
topology [17, 18] and stability [19, 20] of gene or protein
networks. A drawback of this approach is that, although
often genome-wide in scale, network maps tend to be
static, descriptive, and abstract (Figure 1A).

In contrast, dynamical models refer to the other type
of systems-level approaches. Compared to network
maps, dynamical models are typically formulated
around a particular set of components and interactions
among them, and are devised to simulate the time-
dependent dynamics of these components [22, 23].
Dynamical models can be broadly divided into deter-
ministic or stochastic. Deterministic models take the
form of ordinary (temporal dynamics) or partial
(spatiotemporal dynamics) differential equations for
concentrations of components of interest (proteins,
mRNA, and metabolites). On top of that, in order to
account for stochasticity in biological systems, re-
searchers apply stochastic models that are either
based on stochastic differential equations for fluctuating
concentrations or on methods that accelerate, via
advanced algorithms and hardware utilization, direct
simulation of stochastic biochemical reactions. In both
cases, the models describe the dynamical behaviors of
underlying systems. As a result, data derived from
single-cell time traces are particularly effective at
refining model structures and constraining model pa-
rameters [24]. Dynamical models can confer quantita-
tive and mechanistic insights into the operation and
function of biological systems, and importantly, are
often capable of accurately predicting the dynamic

changes upon perturbations or interventions. Although
this approach has only recently been introduced to
aging research, it has already provided important in-
sights into the cell-to-cell heterogeneity and regulatory
mechanisms of aging processes. A drawback of this
approach is that these models tend to be local, confined
to a limited number of components, for which prior
knowledge has been available (Figure 1B).

In this review, we discuss selected examples of
network maps and dynamical models from recent
studies of cellular aging. As an integration of network
maps and dynamical models represents a challenging
but rewarding goal in systems biology, we will discuss
possible ways to connect these two approaches to
achieve a more holistic and dynamic view of aging.
Finally, we will discuss the questions and directions in
aging research that may benefit the most from
computational systems biology. We set out to provide a
thorough and focused discussion of the approaches
and the biological insights obtained from the recent
progress in computational systems biology of cellular
aging with a specific emphasis on some pioneering
attempts of modeling the replicative aging of budding
yeast Saccharomyces cerevisiae. For more compre-
hensive reviews of modeling organismal aging or sys-
tems biology of longevity in general, see Cohen et al.
and Santiago et al. [12, 25]. Computational analyses of
mammalian cell senescence have been extensively
discussed in previous reviews [26, 27] and hence are
not included in this paper.

2 | NETWORK MAP MODELS IN CELL
AGING STUDIES

In recent years, a number of studies have utilized
network map models to probe aging. These range from
abstract theoretical networks to empirical networks of
yeast models, and to those probing networks in aging
mammalian cells. The models are descriptive of gene
and protein networks’ connectivity and topology, and
show the capacity of inferring overarching theories and
hidden causal relations that underlie cellular aging
(Figure 1A).

Qin used network map models to evaluate the
decline of connectivity, in other words the general sta-
bility of gene—gene interactions, of a cell’s overall gene
network during aging [19]. In this study, the network
map was highly abstract. Based on the simplified
assumption that cell death occurs when any essential
gene loses all connections with other factors, the author
proposed an undirected graphic model, in which each
node represents a gene, and nodes of essential genes
are distinguished from those of nonessential genes. In
addition, pertaining to the initial assumption, each
essential node was assigned, on average, n connec-
tions with nonessential nodes but zero connection to
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FIGURE 1 Schematic illustration of network map model and dynamical model. (A) Network map models involve large number of factors
and are usually in the form of undirected or directed graphs to explore the connectivity and causal relations. Typical examples of computations
used in network analysis include computing probability of node connections lost, as well as covariance between two nodes to determine
directionality. Network maps can also be built and viewed to reflect time-dependent changes. (B) Dynamical models focus on small systems
with a few factors. Typically, ordinary differential equations are used to simulate the detailed kinetics and dynamic behaviors of the systems.
Model simulation can be both deterministic and stochastic. Images in (B) were adapted and modified from Li et al. [21].

other essential nodes. Considering the stochastic na-
ture of gene—gene interactions, the author modeled
gene interactions using a binomial distribution and
postulated that the probabilities of interactions decline
with time. Using the model, the author computed a time-
dependent probability of a certain essential node losing
all connections, resulting in network failure and cell
death. Besides the independent variable of time, the
computation also incorporated parameters to represent
the overall stability of gene interactions (the initial

probability of interactions) and the overall configuration
of gene networks (the number of interactions of an
essential node). These parameters were adjusted to fit
model simulation to experimentally determined lifespan
curves from multiple aging-related mutants. These
mutants were found to affect the overall stability of gene
interactions, rather than the overall network structure,
to modulate lifespan. Another study by Vural et al.
applied a different way to model network failure to show
the independence of model fitting to survival curves on
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network topology [28]. Moreover, still using network
models based on nodes and edges, they simulated the
evolution of network structures and developed a
random network as well as a scale-free network, which
preserved hubs of connections under different numbers
of nodes. By assigning each node not only a failure rate
but also a repair rate, such that node failure would not
simply remove nodes from the networks, they demon-
strated that both random and scale-free network
models reproduced survival curves of several model
organisms. Although these models are abstractions of
actual gene networks, and so cannot be directly
compared with experiments, the overarching idea was
insightful and theoretically sound, providing a general
framework for considering the interplay between intra-
cellular gene networks and cell aging.

In addition to such highly abstract models, network
map models can also be empirical, reflecting specific
genes to facilitate the extraction of mechanistic insights
from large-scale experimental datasets. Janssens et al.
utilized a network map model to analyze age-dependent
transcriptomic and proteomic data and found that the
uncoupling of transcript and protein levels of protein
biogenesis related genes might statistically underlie
many aging phenotypes [29]. They first collected tran-
scriptomic and proteomic data from populations of aging
yeast cells harvested at 12 different time points, corre-
sponding to points in replicative lifespan. Analysis of the
time series data revealed that genes related to trans-
lation regulation exhibited a significant decline of their
transcript-protein correlation during aging, in which the
protein levels of the genes increased but mRNA levels
decreased with age. The authors attempted to elucidate
the role of these changes in aging using a network map
model built upon the data they collected. In their directed
graph model, each node represented the age-
dependent expression profile of a gene based on the
transcriptome data, and an edge connected two nodes if
they showed a significant partial correlation (the corre-
lation between two genes when the influence of all other
genes is removed). The direction of the edge was
defined to represent the ability of one gene’s transcript
profile to influence (predict) that of the other gene. The
gene whose expression profile followed that of the other
gene was called a “responsive” node, whereas the other
gene was considered a “causal” node. The direction of
the edge pointed from the causal node to the responsive
node, indicating the potential causal relationship be-
tween the two nodes. All the nodes were clustered
based on their interactions with other nodes. Interest-
ingly, genes related to protein biogenesis were enriched
in the node cluster with the highest causal ranking,
which was based on the ratio of causal to responsive
nodes in a cluster. Based on these results, the authors
proposed that if age-dependent changes of transcript
and protein abundance occur in multiple sequential
steps, then the change of protein biogenesis-related

genes is likely to precede and cause the expression
changes of other genes. The network map model was
used there to untangle the relationships of age-induced
expression changes among genes from transcriptomic
and proteomic profile data. Although the conclusions
from the analysis require further experimental valida-
tion, this study demonstrated a way to reveal potential
cause—effect relationships in a plethora of interrelated
factors, which could shed light onto mechanisms that
drive the progression of aging processes.

Adopting the same age-dependent transcriptomic
and proteomic datasets, Guo et al. built another
network model to explore the uncoupling between
transcript and protein levels from a different angle [30].
They used known protein—protein interaction networks
to determine pairs of interacting proteins, and deve-
loped protein interaction potential landscapes. Interac-
tion potential of each pair of interacting proteins was
computed using their transcript or protein abundances.
If two interacting proteins both have large abundances,
they were assumed to have high interaction potentials.
Then “quasi-potential” can be calculated as the nega-
tive logarithm of the ratio of an interaction potential in
aged cells relative to that in young cells (the ground
state). By plotting the quasi-potentials, the authors were
able to obtain interaction potential for all pairs of inter-
acting proteins of interest at different ages relative to
the ground state. For a landscape, x and y axes rep-
resented proteins sorted by different metrics, for
example, effect on lifespan, node degree, etc. The z
axis represented the calculated interaction potential
(relative to the young state). Basins in the landscape
reflected increased interaction probabilities, whereas
ridges reflected lowered probabilities. They further
defined essential versus nonessential factors based on
their effects on lifespan (the deletion of an essential
gene results in a lifespan of zero), and hub versus
nonhub factors based on their number of interactions
with other factors. They found that the age-dependent
landscapes generated using the proteomic data were
different from the ones using the transcriptomic data.
This uncoupling was especially striking for the in-
teractions between essential proteins or for the in-
teractions between hub proteins, although they seem to
play different roles. Importantly, the authors discovered
that the overlap of the two—the essential hub proteins
—showed substantially increased abundances during
aging, which represents a major contributing factor to
the overall uncoupling of transcript and protein levels
observed in aged yeast cells. This study, together with
that of Janssens et al. described above, demonstrated
how different computational approaches can be used to
analyze the same dataset and obtain distinct but com-
plementary insights to the mechanisms of aging. For
example, the factors related to protein biogenesis
identified by Janssens et al. may represent a primary
functional category of the essential hub proteins in Guo
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et al., whereas some essential hub proteins from that
study may suggest other driving factors of processes of
aging, in addition to those related to protein biogenesis.

Similar approaches have also been used to study
mammalian cell aging. Faisal and Milenkovic combined
a protein—protein interaction network model and age-
dependent gene expression data to study the change
of protein network topology during human aging [17].
They built a comprehensive protein—protein interaction
network from well-established protein databases and
obtained human brain gene expression profiles from
patients of various ages. Based on these data, the
authors determined what proteins in the network were
expressed at different ages, so that they could build a
series of age-dependent protein—protein interaction
networks. The networks were visualized as undirected
graphs, so both the global network topology and local
topology (the number of connections around a specific
protein) could be compared among networks corre-
sponding to different ages. Interestingly, they did not
observe any significant change of the global topology;
instead, they identified many proteins whose age-
dependent expression changes led to substantial al-
terations in their local network topologies. Some of
these proteins overlapped with previously known aging-
related factors, validating their analyses, whereas
others might represent novel aging-related targets to be
tested. This study demonstrates how age-dependent
gene expression data could be integrated into
network map models to achieve a more dynamic
perspective of the overall system. Although the idea of
“local network topology” is rather theoretical, such an
analysis enabled a general visualization of how the
complex network system changes with age and could
facilitate data mining from large-scale datasets to
identify functionally important aging factors.

Besides discovering the driving force of cellular
aging in a complex system, another important chal-
lenge is to identify the source of physiologic heteroge-
neity and lifespan variance within an isogenic
population. Eder et al. recently presented an approach
to explore this question in Caenorhabditis elegans,
pertaining to the idea of modeling time-dependent
changes of the whole system [31]. This approach was
enabled by C. elegans whole-organism transcriptomics
in isogenic populations at different ages obtained by
Asynch-seq. The authors used gene expression vari-
ances between isogenic worms as a measurement of
nongenetic heterogeneity and found that, after dimen-
sion reduction, wildtype (WT) C. elegans showed vari-
ance in gene expressions not lying on the trajectory
defined by age until very old age. They found that such
nongenetic heterogeneity can be attributed to the
decrease of correlation between mRNA contents in
germline and somatic cells. Germline-specific genes
and somatic-specific genes as two modules became
more anticorrelated in aged individuals. The authors

then demonstrated that knocking down of germline
RNA polymerase Il subunits not only reproduced the
disparity between germline and somatic gene expres-
sions but also recapitulated the nongenetic variance
observed during the aging process. This could be
shown by the observation that genes affected more by
the knockdown, in both germline and somatic cells, has
more weights in PC1—the axis along which the
nongenetic variances lie in the above-mentioned
dimension reduction. Interestingly, germline ablation
reduced both the nongenetic variance in gene expres-
sion profiles and the observed worm lifespan variance.
After controlling the difference between germline and
somatic mMRNAs, the authors identified an additional 16
groups of co-expressed genes, suggesting another 16
possible axes of nongenetic variance in the high
dimensional space.

To generalize this strategy and find more causal
factors of nongenetic variances in aged gene expres-
sion profiles, the authors sequenced transcriptomes of
treated worms and assessed what treatments reca-
pitulated the age-dependent nongenetic variances in
the differential gene expression space. Using this
approach, the authors identified 40 “hit” treatments,
composed of knockdowns of functionally diverse genes
forming 7 loosely co-expressed clusters, but not
including environmental perturbations such as tem-
perature or diet. Interestingly, in many of the knock-
down screens they performed, if the target gene is more
co-expressed with another gene—an information
extracted from interaction network models—the other
gene would be affected more by the knockdown,
showing that gene co-expression data could serve as a
good matrix when predicting the effects of a perturba-
tion on the whole complex system. This recent study
demonstrated the power of systems-level analysis at
identifying hidden regulatory factors, enabled by ad-
vances in sequencing technologies and bioinformatic
analysis.

3 | DYNAMIC MODELS IN CELL AGING
STUDIES

Distinct from large-scale network models described
above, dynamical models focus on a limited humber of
factors and simulate their (spatio) temporal dynamics,
as well as the kinetics of their interactions. This type of
model can often be used to obtain mechanistic insights
into the observed functional changes and generate
predictions directly testable by perturbations in the
systems (Figure 1B). A series of studies on gene
expression noises in aging provides an interesting
example. Initially, Acar et al. proposed that simple
positive and negative feedback loops contained in gene
expression control network had the capacity of network-
dosage compensation, meaning the invariance of gene
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expression level under the variance of gene copy
numbers [32]. To further investigate the role of network-
dosage compensation in gene expression noise
reduction, Peng et al. combined experiments and or-
dinary differential equation (ODE) modeling to under-
stand compensated and noncompensated galactose
(GAL) network subject to intrinsic stochasticity and
extrinsic noises of gene expression in yeast [33]. They
found that the system with compensation motif could
better reduce the effects of extrinsic noise than the
noncompensated system. Constrained by substantial
single-cell data, their dynamic model could nicely pre-
dict stochastic gene expression responses upon phy-
siological and genetic perturbations.

Successful modeling of the GAL regulatory system
gave the authors important handles to study noise dy-
namics in aging cells [34]. Interestingly, they observed
that gene expression noise in the GAL system
decreased during aging until the late “catastrophe”
phase (the final four generations of replicative lifespan).
In order to explain this phenomenon, the authors
applied their stochastic model of the GAL system and
focused specifically on the role of promoter ON and
OFF states transition rates. The model suggested that
an age-dependent parallel increase in both the ON and
OFF rates of the promoter state transition could reduce
the expression noise while keeping the expression level
unchanged, recapitulating the experimental observa-
tions. These modeling results were consistent with an
earlier study proposing that intrinsic gene expression
noise was predominantly determined by stochasticity in
promoter state transitions [35] and aligned with age-
dependent loss of chromatin stability observed previ-
ously [36].

This series of studies [32—34] demonstrated that
dynamical models of a well-established gene regulatory
network, when combined with high-resolution aging
data, could shed light onto the novel effects of aging on
cellular systems and the molecular mechanisms un-
derlying these effects. In approaching a general aging-
related process, Erjavec and colleagues developed a
dynamical model to study the role of asymmetrical
segregation of damaged protein aggregates during cell
aging [37]. The primary variable in the model corre-
sponded to total damaged proteins in the cell, indepen-
dently of any specific genes. The authors used ordinary
differential equations to compute the rates of changes of
intact protein and damaged protein concentrations,
which are governed by protein production, degradation,
and conversion of intact protein to damaged protein.
Partitioning of intact and damaged proteins between a
mother cell and its progeny was governed passively by
asymmetrical cell division (uneven protein segregation
depending on cell sizes) and actively by specific reten-
tion of damaged proteins in the mother cell. Damaged
proteins could slow cell growth and eventually lead to
cell senescence when their total level reached a

threshold. By simulating the growth (fitness) of aging
colonies, the authors found that both asymmetrical cell
division and mother cell retention of damaged proteins
could enhance the fitness of the population and delay
clonal senescence. Interestingly, when combined with
asymmetrical cell division, damage retention in mothers
was only beneficial at high damage production rates,
whereas a symmetrically dividing population could
benefit from damage retention at all damage levels.
These results highlighted an important role of damage
retention mechanisms in symmetrically dividing cells,
which led to the discovery of uneven damage partition-
ing in Schizosaccharomyces pombe. The detailed
mechanisms underlying damage retention and segre-
gation [38—40] were largely unknown when that study
was conducted. Therefore, that model remained simple
and abstract, without considering specific factors or
regulatory networks. Because of that, it could be
generally applied to the aging of various types of sym-
metrically dividing cells, such as Escherichia coli and
mammalian epithelial cells.

More recently, Vedel et al. combined theory with
experiments in bacteria and incorporated environ-
mental stress into the model of damage partitioning
during aging. They found that, on the population level,
asymmetrical damage segregation could enable a
healthy subpopulation that divided quickly and sus-
tained the overall health of the colony under high stress
conditions. At the same time, on the single-cell level,
the degree of asymmetrical segregation increased with
stress level, further contributing to an adaptive effect
[41]. Some additional modeling analyses have been
conducted along this line of research [42—45], which
demonstrate the power of generalized dynamical
models on advancing a fundamental understanding of
aging biology.

Modeling the dynamics of general damage factors
has also been used to guide the development of the-
ories explaining organismal aging. In aging of many
species, mortality rate increases exponentially with
age, but the acceleration of such increase of mortality
rate decreases among surviving old individuals. This is
a phenomenon described by the Gompertz law [46].
One attempt was made to use simple dynamic
modeling to understand the relation between mortality
rate and damage on transcriptional stability [47].
Although many model organisms show increasing
mortality rates that follow the Gompertz law, some or-
ganisms with an exceptional long lifespan, such as
naked mole rats, show a constant mortality rate. Given
that these long-lived organisms feature stable gene
expression profiles, the authors modeled the dynamics
of damage rate of transcriptional regulation with an
inter-dependent two-equation ODE model. The model
is an abstraction of actual genes and proteins, and
described the idea that instability in the genome or
epigenome would cause alteration in the proteome.
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Moreover, since many proteins regulate gene expres-
sion, the altered proteome further influences the genes.
The two ODE equations described the occurrences of
“‘damaged genes” and “damaged proteins”, respec-
tively. Terms in the equations that described production
and degradation of the “damages” represented mutual
influence between gene and proteins, external
stresses, and also internal damage repair mechanisms.
The authors showed that enhanced repair mechanism
could account for transcriptional stability and mortality
rates in naked mole rats.

By modeling the dynamics of senescent cell pro-
duction and removal, Karin et al. also provided an
explanation of the Gompertz law and demonstrated
the generalizability of their model [48]. By defining time-
dependent mechanism and senescent cell abundance-
dependent mechanism for both production and removal
of senescent cells, the authors generated 16 theoreti-
cally possible models based on whether each mecha-
nism is present or absent. They scanned which model
best recapitulated in vivo longitudinal tracking of se-
nescent cell abundance in mice, by first writing all
mechanisms into one equation with three terms—
production, removal, and noise—and then setting
every combination of parameters to 0, dictating the
presence and absence of mechanisms during model
simulation. The best-fitting, simplest model was termed
saturating removal model. It contained 4 parameters
and described that senescent cells accumulate linearly
with age, whereas their removal slows down by their
own accumulation. The authors also showed that this
model captured the half-lives of chemically induced
senescent cells in young versus old mice. By modeling
the event of death as senescent cell abundance pass-
ing a threshold, the model further analytically repro-
duced the Gompertz law in mice and in human, with
modest adjustments in parameter values. The model’s
implication of mechanism is particularly interesting, as it
describes that individuals with high senescent cell
abundance has lower removal rate, whereas those with
low senescent cell abundance maintains removal bet-
ter, thus explaining the deceleration of mortality rate
among old individuals. The saturating removal model is
also generalizable to the accumulation of general risk
factors. So long as a causing factor of aging has fast
turnover rate that slows down by self-accumulation, the
model recapitulated the change of mortality rate when
switching diet in Drosophila. On top of that, with a
modified production rate, the model also recapitulated
the scaling of C. elegans survival curves under different
temperatures.

Indeed, the survival curve is typically considered the
concerted output of aging of a complex system, it is
thus a very important phenomenon to understand.
Researchers have been trying to recapitulate the curve
with understandable models to deduce key factors of
aging, but there are potential pitfalls. For example, a

Weibull model showed better fitting to yeast survival
curves under a variety of genetic perturbations [49] than
the Gompertz model. However, it has also been shown
that Weibull model is inherently more tolerant to noises
in experimental data, so a better fitting model may not
be more biologically informative [50]. Such challenge is
relevant to other dynamic modeling as well. Therefore,
it is important to utilize iterations of experiments and
modeling, focusing on testable predictions that can be
used to evaluate and refine models based on multiple
rounds of experimental perturbations.

The same saturating damage removal model, when
coupled with single-cell techniques to track damage
dynamics in individual E. coli cells, further elucidated
the mechanism behind damage accumulation and
determination of cellular lifespan [51]. The authors uti-
lized a microfluidic device and propidium iodide, which
is a fluorescent dye that marks damaged cell mem-
brane to track damage accumulation dynamics in single
E. coli cells. They found that initial conditions including
initial damage, cell size, and cell cycle phase did not
explain the variance in cellular lifespans. Instead, a
damage removal model improved and fine-tuned with
experimentally collected damage distribution among
cells at different time points could reproduce the
observed damage accumulation dynamics and life-
spans. The model pointed to a mechanistic insight that
the saturation of damage removal amplified the sto-
chasticity in damage accumulation to eventually cause
the variance in cellular lifespans. The authors also used
the model to make more detailed predictions about
damage dynamics upon interventions of damage pro-
duction or removal. The single-cell tracking technique
allowed them to fully test and confirm the predictions in
a mutant E. coli strain without a master regulator of
stress response. This recent study not only confirmed
the generalizability of the saturating removal model but
also emphasized the importance of advances in cell
tracking techniques in studies of aging dynamics.

Besides population level survival curves, single-cell
technology in yeast aging studies in conjunction with
dynamic models have been used to understand
some complicated phenomenon previously veiled by
population-level data. Traditional population-level data
suggested that many age-related detrimental factors
gradually accumulate throughout the lifespan, resulting
in a gradual functional decline in aging cells. However,
using a single-cell imaging approach in budding yeast,
Morlot et al. found that a discrete time point referred to
as the senescence entry point (SEP) was obscured by
population-level data [52]. They discovered that for in-
dividual aging yeast cells, functional declines were
largely initiated after SEP. Previous studies revealed
that, during yeast aging, the ribosomal DNA (rDNA)
region containing 100-200 copies of rDNA tandem re-
peats showed elevated rates of DNA double strand
breaks and recombination, leading to the spontaneous

85U0 |7 SUOWIWOD aAeaID 3(qedljdde aup Aq pausenob ae seonfe VO ‘@S JO Sa|nJ 10} A%eiq18uliuO A1 UO (SUORIPUOO-pUe-SWLBYLIY" A8 |1m" AfeIq U1 |UO//:SANY) SUORIPUOD pUe SWLe 1 8y} 89S *[5202/90/£0] Lo AriqiTauljuo Ae|im eiuIo}ieD JO AiseAlun A 2000£ Zanb/z00T OT/I0p/woo A8 |m Akeiq1jeuljuo//sdny Woly papeojumod ‘¥ ‘5202 ‘2695602



8 of 16 |

SU and HAO

formation of extrachromosomal rDNA circles (ERCs)
excised from the rDNA region. ERCs are self-
replicating DNA circles, asymmetrically segregated to
mother cells during cell divisions, resulting in its expo-
nential accumulation in aging mother cells [53]. Morlot
et al. proposed that the accumulation of ERCs over a
certain threshold correlates with entry into cellular
senescence. Their hypothesis was supported by ob-
servations that pre-rRNA levels increased along with
ERC accumulation, whereas levels of ribosomal
biogenesis factors remained constant, resulting in a de-
synchronization within protein biogenesis machinery.
Based on these data, the authors built a stochastic
model to predict cellular lifespan based on molecular
events related to ERC formation and accumulation. The
model incorporated three steps: the stochastic excision
of the first ERC from the rDNA region, the self-
replication of ERCs until reaching the SEP threshold,
and the process between SEP and cell death. Although
this model did not simulate detailed dynamics of mo-
lecular processes, it aptly reflected the stochastic na-
ture of sequential events including the occurrence and
accumulation of ERCs, and cell death after senes-
cence. Moreover, in order to reproduce the data
from fob1A cells, in which a major fraction of cells did
not experience SEP, the authors added an ERC-
independent process to cell death in their model.
Their model was able to reproduce the lifespan curves
of WT and several well-known aging mutants and
supported a scenario for at least a subpopulation of
cells, in which aging can be initiated by a purely sto-
chastic event, defined as the excision of the first ERC
from rDNA. Although the probability of this event can be
age-independent, the cumulative probability will inevi-
tably increase with time, resulting in the unavoidable
start of the aging clock driven by the subsequent
exponential growth of ERC copies.

In addition to simulating well-established systems,
dynamical models can also be constructed to interpret
and understand new experimental observations, which
can lead to discovery of novel biological interactions.
Recently, our group combined microfluidics with time-
lapse microscopy to track a large number of single
yeast cells throughout their entire lifespans. We found
that isogenic yeast cells diverged early in life toward
two different paths of aging marked by distinct pheno-
typic changes such as daughter cell morphology and
cell cycle length [36, 54]. During aging of individual
cells, these paths were mutually exclusive and largely
irreversible, suggesting the existence of a fate decision
circuit that drives the divergence of aging paths. In
theory, two mutually inhibitory factors can constitute a
“toggle switch” circuit underlying such fate decision
processes. To search for the molecular basis of the
phenotypic divergence in aging and the potential “tog-
gle switch,” we developed florescent reporters to
monitor the dynamics of aging-related molecular

processes. We identified chromatin instability and
mitochondrial biogenesis pathways, which mediated
the two types of age-induced phenotypic changes
(Mode 1 aging vs. Mode 2 aging), respectively [21].
Furthermore, through genetic perturbation analyses,
we found that the lysine deacetylase Sir2 and the
heme-activated protein complex (HAP), major regula-
tors of the two pathways, inhibit each other, forming a
toggle switch circuit. We devised deterministic and
stochastic models of this circuit, which captured its
multi-stability nature (a system with multiple steady
states) and could nicely reproduce the single-cell aging
trajectories in WT and various mutants. Importantly, the
model predicted the emergence and enrichment of a
third long-lived aging path (a new longevity steady
state of the system) upon overexpression of both Sir2
and HAP. We performed genetic engineering to test the
prediction experimentally and indeed enriched this
long-lived population of cells, never observed before in
WT cells, which led to a dramatically extended lifespan
of the whole cell population.

The model of the core aging circuit further guided
our pioneering attempt of using synthetic biology to
engineer cellular aging processes [55]. The model
showed that the endogenous Sir2-HAP toggle switch
mediates the commitment to detrimental steady states
with prolonged rDNA instability or mitochondrial
dysfunction, both of which could lead to cell death.
Based on the insights from modeling, we hypothesized
that rewiring the toggle switch into a negative feedback
loop could create a genetic oscillator, which can pre-
vent aging cells from commitment to either detrimental
steady state and thereby lead to a longer lifespan.
Under guidance of modeling, we replaced the native
SIR2 promoter with a HAP-inducible CYC1 promoter,
enabling positive transcriptional regulation of SIR2 by
HAP. Additionally, to allow Sir2 to inhibit HAP tran-
scription, we inserted a construct containing the HAP4
gene (which encodes a key HAP subunit) under a
constitutive promoter into the rDNA region, which is
subject to transcriptional silencing by Sir2. The resulting
rewired strain exhibited oscillations in Sir2 levels, along
with periodic cycles of rDNA silencing and heme
biogenesis throughout aging. Importantly, the system
did not result in a prolonged commitment to either rDNA
silencing loss or heme depletion, leading to a remark-
able 82% increase in yeast lifespan—a record for life-
span extension through genetic interventions. This
work demonstrated, for the first time, a direct causal link
between gene network architecture and cellular life-
span and highlighted the power of computational
modeling in guiding rational design of gene circuits for
longevity.

Our modeling approach can also advance our un-
derstanding in environmental control of aging [56].
Previous research has demonstrated that limiting
glucose increases the activities of both Sir2 and HAP,
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which in turn can extend lifespan in yeast and other
organisms. This raised the possibility that altering
environmental conditions could create a longevity
steady state similar to the one induced by genetic
overexpression. To explore this idea, we examined the
impact of varying glucose concentrations (from 5% to
0.02%) on yeast aging. We found that glucose levels
modulate Sir2 and HAP activities in a dose-dependent
manner, influencing the balance between these two
factors and ultimately guiding the aging process. Spe-
cifically, reducing glucose favored Mode 1 aging, which
is characterized by rDNA silencing. It is worth noting
that a glucose concentration of 0.1% resulted in a
balanced, intermediate state for Sir2 and HAP, creating
an optimal environment for lifespan extension. This in-
termediate balance appeared to establish a longevity
steady state, maximizing lifespan compared to other
glucose levels tested. Additionally, we demonstrated
both theoretically and experimentally that periodic
fluctuations in glucose levels could stabilize the system
around this intermediate state of Sir2 and HAP activity,
leading to lifespan extension without necessarily
establishing a new longevity steady state.

Besides the knowledge gained about underlying
gene regulatory circuits, rich cell morphology informa-
tion was also collected in the tracking of single-cell
yeast aging. Our observation of two aging trajectories
with distinct daughter cell morphologies—tubular elon-
gated buds in Mode 1 aging versus spherical small
buds in Mode 2 aging—facilitated the exploration of cell
morphological control during the aging process, an
important question in aging research. Tsai et al. [57]
developed a combination of a 3D coarse-grained par-
ticle-based model that simulated the mechanical
changes of the cell surface, and a reaction diffusion
model that simulated the polarized spatial distribution of
growth signals. The polarization of growth signals dic-
tates the insertion region of new cell surface material,
whereas changed 3D cell shape determines the further
changes of signal polarization. The authors considered
elongation of daughter cells in Mode 1 aging as a case
of mis-regulation of cell morphogenesis during the ag-
ing process. With model simulations, they found that
this could happen when growth was restricted to the
bud tip, whereas the addition of new surface material
was faster than relaxation of surface. The tubular shape
would be stabilized as the polarization of growth signal
decreases at the end of a cell cycle. These simulations
suggested potential mechanisms for future experi-
mental validations.

Unlike many other modeling analyses that were built
upon previously known networks, our modeling work on
yeast aging was guided by the compelling experimental
observations of single-cell phenotypes and dynamics,
without prior knowledge of the regulatory network.
Hypothetic network structures underlying the observed
single-cell dynamics had been first conceived and had

been used to guide our experimental identification of
the molecular components and underlying mecha-
nisms. The model generated testable predictions,
leading to new biological insights and the possibilities
for new pro-longevity interventions in yeast and
beyond. Our studies also highlighted the importance of
the recent advances in measurement technologies,
which enable tracking of single-cell aging dynamics,
invaluable for conceiving and constraining dynamical
models. Reviews of single-cell technologies used in
aging studies can be found elsewhere [24, 58, 59].

4 | INTEGRATING NETWORK MAPS
AND DYNAMICAL MODELS

As demonstrated by the examples discussed above,
network maps reveal the general architectures of large-
scale biological systems, whereas dynamical models
describe the mechanistic operation of a particular set of
regulatory factors. Network maps are powerful for
characterizing the global topologies and functional
relevance of molecular networks, but they may be static
and descriptive; in contrast, dynamical models can
advance understanding about the mechanistic causal
connections among the network structure, dynamics,
and function, but they tend to be local, thus limited by
the scale. It will be rewarding to integrate these two
types of computational analyses to empower a more
comprehensive and dynamic view of cellular aging
processes.

To address these challenges, a top-down strategy
has been depicted, based on the currently more prev-
alent bioinformatics methodologies [15] (Figure 2A). It
suggests that starting from a “scaffold” of all in-
teractions drawn from databases, a comprehensive
network map can be built. Then experimental data can
be used to derive smaller Bayesian networks of interest
[60, 61]. Further perturbation data allow one to convert
Bayesian network models into Boolean models that are
capable of simulating an unrealistic, discrete step-by-
step propagation of the perturbations throughout the
network [62]. A different approach had been attempted
to achieve the same goal by building sets of interacting
genes that are relevant to certain perturbations and
phenotypes [63]. Both approaches aim to identify more
focused networks that are relevant to the perturbations
or phenotypes of interest. Incorporation of kinetics to
Boolean models can then enable construction of
dynamical models [64]. In this way, dynamical models
may be formulated to describe and simulate functionally
specific subnetworks of large-scale genome-wide
network maps.

We propose here the possibility of a bottom-up
strategy, starting with dynamical models of small
network motifs, which can be further connected and
expanded to simulate the dynamics of a larger network
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FIGURE 2 Schematic representation of the procedures for integrating network maps with dynamical models, with (A) the top-down

strategy, or (B) the bottom-up strategy.

system (Figure 2B). A limitation of standard dynamical
modeling is that this approach is most useful for net-
works with a small number of components. For large-
scale networks with many components, most dyna-
mical models are prone to overfitting, caused by large
numbers of free parameters and the scarcity of experi-
mental data, which compromises the models’ ability to
provide mechanistic insights and make meaningful
predictions. Therefore, we propose instead to start with
building dynamical models of small network motifs that
can be well-constrained by experimental data and then
connect these network motifs together into a large
network [65] by modeling the dynamic interactions
among these motifs.

Network motifs were defined as particular patterns of
interconnections among network components that occur

significantly more often in real networks as compared to
in random networks [66]. Based on this definition, efforts
have been made to find transcriptional regulation
network motifs and characterize their properties by ODE
models [67]. Now, the functional roles of many motifs in
cellular information processing are well understood. For
example, negative feedback loops can mediate delayed
refractoriness of information processing, such that the
system can have a time window to respond to input
signal before the negative feedback suppresses further
activation by spurious signals [65, 68, 69]. Positive
feedback loops can boost the response to later expo-
sure to the same signal, and its underlying dynamics can
function as a bistable switch, so that this motif drives
genetically identical cells to one of the two steady states
that respond differently to later stimulation [70, 71].

85U0 |7 SUOWIWOD aAeaID 3(qedljdde aup Aq pausenob ae seonfe VO ‘@S JO Sa|nJ 10} A%eiq18uliuO A1 UO (SUORIPUOO-pUe-SWLBYLIY" A8 |1m" AfeIq U1 |UO//:SANY) SUORIPUOD pUe SWLe 1 8y} 89S *[5202/90/£0] Lo AriqiTauljuo Ae|im eiuIo}ieD JO AiseAlun A 2000£ Zanb/z00T OT/I0p/woo A8 |m Akeiq1jeuljuo//sdny Woly papeojumod ‘¥ ‘5202 ‘2695602



DYNAMIC SYSTEMS APPROACHES TO CELL AGING

| 11 of 16

Feedforward loops can accelerate or delay the response
time of gene expression based on their specific struc-
tures [72], and can contribute to information storage by
triggering formation of mRNA granules during mRNA
transcription, enabling a prolonged gene expression
response to input signals [73].

Although the general properties of certain motifs are
well studied, the exact dynamics of these motifs in the
context of various biological systems will need to be
further examined by dynamical models and constrained
by experimental data. The interactions between com-
ponents of motifs might include different types of
regulation, such as protein—protein interaction and
transcriptional control, thus operating with different time
scales and kinetics [74]. This kind of complexity, as well
as stochasticity in molecule interactions, is within the
scope of dynamical modeling.

An understanding of the general dynamic properties
of network motifs can also help us identify new in-
teractions between functionally relevant factors based
on experimental observations. For example, a bimodal
response suggests the presence of a positive feedback
loop or a mutual inhibition motif, whereas an oscillatory
response might suggest the presence of a delayed
negative feedback loop. In this way, instead of mining
small motifs of interest out of larger networks, it is also
possible to discover and model new interactions and
new network motifs based on the observations of the
system’s behaviors. Time trace experiments can be
performed to constrain model parameters and refine
model structures. Models will then enable investigators
to generate predictions, which will be tested in further
experiments. It is important to use iterations of experi-
ments and modeling to improve and test the models’
performance and predictive power, both within the
study of motif and in the pursuit of understanding of
aging in general. A successful example of this approach
in aging research is the recent analysis of the Sir2-HAP
circuit in yeast aging [21, 55, 56]. As described in the
section above, through genetic perturbation experi-
ments, we found that Sir2 and HAP form a “mutual in-
hibition” motif, which, in theory, could give rise to
bistable fate decision responses. Our deterministic and
stochastic models of this network motif helped us un-
derstand the mechanism underlying the divergence in
single-cell aging trajectories and generated predictions,
which led to the creation of an engineered long-lived
mode of aging. In future studies, we can apply the
same approach to other aging-related small networks,
such as the proteostasis network and the nutrient-
sensing pathways, and then quantify and model the
interactions of these networks with the Sir2-HAP circuit,
with the goal of constructing, step-by-step, a compre-
hensive dynamical model of the aging process in yeast.

We propose that another angle of thinking about
integration of the dynamical modeling approach with

large-scale networks can be based on the idea of
“modularity” adopted from network map studies [75—
77]. Network map analyses led to a hypothesis that
gene networks were composed of modules of func-
tionally related genes [78]. In support of this idea,
studies found that genes emerging at closer points in
evolution were more likely to interact with each other
and evolution may have favored the emergence of
clusters of genes that are subject to the same regula-
tion and mediate the same function [79]. By approxi-
mating a gene module into a single variable, dynamical
models can then be used to simulate the interactions
among a limited number of gene modules in a large-
scale network, similar to modeling the interactions
among individual genes or proteins in a network motif.
The models can be constrained by experimental data
focusing on the dynamics of the master regulator in
each gene module, which represents the entire gene
module. Similarly, dynamical models can also be
applied to other types of interacting gene groups,
clustered from expression profile datasets using
dimensionality reduction methods, such as principal
component analysis [80] and uniform manifold
approximation and projection [81]. If the master regu-
lators of gene modules are connected into specific to-
pologies similar to those of network motifs, the models
of network motif dynamics can be readily applied to
simulating and understanding the dynamics of gene
modules within a large-scale network.

For aging research in particular, we anticipate that
quantitative analyses of the interactions among
network motifs or gene modules will provide important
biological insights into the mechanisms of aging, as
age-dependent alterations of these interactions would
most likely affect the overall topology and stability of
the genome-wide network [82]. For example, protein
chaperones could be central mediators connecting
many functional modules of protein networks via weak
interactions. Breakage of the interactions around
chaperones could lead to increasing noise and insta-
bility of the overall network during aging [83]. Dynam-
ical models of such central mediators hold the
promise of shedding light onto how aging influences
the coordination among different network motifs or
gene modules and affects the topology and function of
gene networks, resulting in aging phenotypes and
functional deterioration.

5 | PERSPECTIVES

Cellular aging is highly complicated—not only due to
complex dynamics of aging-related factors but also due
to intricate interconnections between these factors.
New systems-level approaches that integrate stochas-
tic and nonlinear dynamical systems with large datasets
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are required to address such complexity. Above we
have discussed the recent progress in computational
modeling in aging biology and proposed potential
strategies to integrate network maps with dynamical
models to study comprehensive aging-related net-
works. Below we list some directions or questions in the
biology of aging where these approaches may be
especially helpful.

5.1 | Toward a comprehensive
molecular network of aging

Many examples have been identified of cross-talk
among molecular and cellular hallmarks of aging [5]
(Figure 3). However, understanding how these in-
teractions operate dynamically to drive aging and how
these hallmarks are temporally coordinated in individual
aging cells remains elusive. New measurement
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technologies, in combination with dynamical modeling,
can enable us to quantify the dynamics of specific
interconnected aging hallmarks and understand the
functional consequences of their interactions on cellular
phenotypes and lifespan. For example, our analyses of
the Sir2-HAP circuit revealed the dynamic interactions
between chromatin instability and energy metabolism
and how these interactions underlie the single-cell aging
trajectories. Building upon this work, the next step would
be to identify the interactions between other aging hall-
marks and quantitatively analyze the dynamic coordi-
nation of these processes/pathways during aging. In
fact, the latest studies from our group and others have
uncovered new interactions between chromatin insta-
bility and loss of proteostasis [84, 85]. Based upon these
findings, dynamical models can be developed for these
newly defined interactions and combined with the
existing Sir2-HAP circuit models to form a larger-scale
model of aging. Systematic expansion along this line of
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FIGURE 3 Schematic representation of known aging-related interactions between functional components of a cell. A blue edge indicates
an interaction between two components, which confers an anti-aging effect under the normal physiological condition. A red edge indicates an
interaction between two components, which confers an anti-aging effect upon environmental perturbations, such as caloric restriction.
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research will eventually lead to a mechanistic, dynam-
ical model of aging, which will be comprehensive and, at
the same time, predictive because it will be well-
constrained by fine-grained single-cell data.

As discussed above, a complementary approach is
to start with the existing datasets of age-dependent
gene expression profiles [29, 86] and group genes
into modules based on their functions or using dimen-
sionality reduction methods. Single-cell time-lapse
measurements and dynamical modeling can then be
applied to quantify the dynamic interactions among a
limited number of representative genes for gene mod-
ules and evaluate their effects on aging phenotypes
and dynamics. For example, Janssens et al. have
grouped genes into multiple modules based on their
expression profiles and proposed potential causal in-
teractions among these modules [29]. Further studies
can then focus on the dynamics of selected genes,
which are representatives of these modules, in single
aging cells. Genetic perturbation experiments can be
performed to verify their interactions and functional
relevance to aging. Based on these data, dynamical
models can be constructed to simulate the dynamics of
gene module networks and how these modules coor-
dinate to shape aging trajectories in cell populations
and in individual cells. These analyses, through a top-
down perspective, will also lead to a systems-level
dynamical model with predictive power at the single-
cell resolution.

5.2 | Why do isogenic cells age
differently?

Cellular aging is a highly heterogenous process wherein
genetically identical cells can age with strikingly
different phenotypes and at significantly different rates.
However, the sources of such variability remain largely
unknown. Although gene expression is intrinsically
stochastic at the single-cell level, whether and how
these expression noises can underlie the sharply
distinct aging phenotypes and lifespan in single cells
remains unclear. Building upon the identified molecular
networks of aging and single-cell time trace data, sto-
chastic simulations will provide important insights into
how variations in the expression of specific aging-
related genes can be propagated through complex in-
teractions within the aging-related networks and
contribute to the different phenotypes observed in
isogenic aging cells. For example, a positive feedback
loop or a mutual inhibition circuit can convert modest
variations in gene expression into switch-like bimodal
responses, which can then lead to discrete phenotypic
states. Several modeling studies have attempted to
explore the variability in yeast aging and have made
interesting findings regarding the stochastic behaviors
of specific aging-related factors or processes [21, 34,

52, 54]. Once the comprehensive molecular network of
aging is constructed as described above, a systematic
analysis can be performed to examine the cell-to-cell
variability in all the major network components during
aging. Experiments and models can be designed to
evaluate the source and propagation of the expression
variances and their contributions to the heterogeneity in
aging phenotypes and dynamics.

5.3 | How do environmental conditions
shape cellular aging dynamics?

It has been shown that cellular lifespans can be sub-
stantially influenced by environmental conditions. For
example, caloric restriction, or more generally mild
stresses, can promote longevity from yeast to mam-
mals and represents a robust approach to extend life-
span [87—89]. Recent studies revealed that the effects
of environmental nutrient conditions are primarily
mediated by highly conserved nutrient-sensing
kinases, such as the mechanistic target of rapamycin,
AMP-activated protein kinase, and protein kinase A
[90-92]. These kinases regulate a wide range of
metabolic and cellular processes through complex
signaling and transcriptional networks. However, how
these regulatory networks change during aging and
how they mediate the effects of environmental condi-
tions on aging and lifespan remains largely unclear.
Dynamical models, in combination with time-lapse
measurements, can be used to quantify the age-
dependent dynamics of these networks and advance
mechanistic understanding of the interplay between
environmental and genetic factors and its role in
determining aging dynamics. In particular, recently
increased attention has focused on the benefits of pe-
riodic caloric restriction or intermittent fasting [93-97].
However, an exhaustive exploration of input dyna-
mic patterns is not yet experimentally feasible given
the complexity of a dynamic input. Systems-level
dynamical models will be able to sweep the variable
space for dynamic inputs in silico and predict the re-
lationships of the lifespan and dynamic input patterns
with different amplitude, frequency, duration or interval.
These predictions will guide further experimental
testing of dynamic patterns of caloric restriction and will
facilitate the design of dynamics-based interventional
strategies for promoting longevity.

Although still in its infancy, computational systems
biology of aging is beginning to demonstrate its po-
tential in pushing forward our understanding about the
biology of aging from systems and dynamical per-
spectives. We envision that in the near future, an inte-
gration of network maps and dynamical models will
enable the construction of the first ever comprehensive
predictive model of aging networks, which will lead to
new discoveries in the mechanisms of aging and new
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interventional approaches for extending the health span
of living organisms.
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