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Rationally reprogramming single-cell
aging trajectories and lifespan
through dynamic modulation of environmental inputs
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How do variations in nutrient levels influence cellular lifespan? A dynamical systems model of a core circuit
involved in yeast aging suggests principles underlying lifespan extension observed at static and alternating
glucose levels that are reminiscent of intermittent fasting regimens.
Aging is a complex and multifaceted pro-

cess driven by the accumulation of dam-

age in cells through both cell intrinsic and

extrinsic factors. While specific drivers of

aging have been identified in broad biolog-

ical contexts spanning epigenetic regula-

tion, metabolism, and stress response,

these findings are complicated by the

fact that said pathways are often intricately

coupled.1 At the same time, significant

effort in the aging field has focused on

the identification of individual genes that

affect lifespan when deleted in model or-

ganisms.2 Despite important findings,

such approaches tend to overlook the in-

teractions between multiple genes and

pathways and thus fail to capture the

complexity of aging. A systems perspec-

tive is necessary to understand how ag-

ing-associated phenotypes are realized

over time within cells3; such an under-

standing could pave the way for novel in-

terventions aimed at extending healthy life-

span or healthspan.

The development and application of

dynamical systems models offers a

path toward tackling the aforementioned

complexity associated with aging.4

Furthermore, the extensibility of such

models—particularly their capacity to inte-

grate stochastic and nonlinear dynamic el-

ements—makes them well-suited to the

inherently noisy and nonlinear features of

the associated biological processes.

Accordingly, such approaches could

be instrumental for decoding the intri-

cacies of cellular aging and identifying life-

span determinants through mechanistic
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modeling of datasets obtained from ag-

ing cells.

Previous studies in model organisms

have predominantly focused on aging

and lifespan in static environments. How-

ever, environmental factors, such as nutri-

ents and stress, impose constraints on

cells almost exclusively in a dynamic

fashion, making it imperative to under-

stand how naturally changing environ-

ments affect genetic networks regulating

cellular aging and lifespan.

The paper by Liu et al. demonstrates the

utility of combining these perspectives and

approaches.5 It shows how a stochastic

model of nonlinear gene regulatory dy-

namics can provide testable predictions

of aging dynamics and lifespan outcomes

in both static and fluctuating environ-

mental conditions. Using a microfluidics-

coupled time-lapse microscopy setup,

the authors quantitatively tracked individ-

ual yeast Saccharomyces cerevisiae cells

throughout their entire replicative lifespan,

spanning multiple days. Replicative life-

span is a frequently used metric that mea-

sures the total number of mitotic division

events—or generations—for a newborn

yeast cell until its death. For example,

wild-type yeast cells of the type used in

the current study live, on average, 22–23

generations.Until recently, it was unknown

whether yeast aging was associated with

multiple distinct phenotypes. In a previous

landmark study, the same UCSD collabo-

ration that participated in the Liu et al.

study discovered that two distinct mor-

phologies (named ‘‘Mode 1’’ and ‘‘Mode
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2’’) were associated with aging yeast

cells; driven by the loss of ribosomal

DNA (rDNA) silencing and nucleolar

decline, Mode 1 aging was characterized

by the continuous production of elongated

daughter cells.6 On the other hand, driven

by heme depletion and mitochondrial

deterioration, Mode 2 aging was charac-

terized by the production of small and

round daughter cells.6 The researchers

further showed that the Sir2 proteins take

a representative role in Mode 1 aging

through mediating chromatin silencing at

rDNA, while the heme-activated protein

(HAP) complex takes a key role in Mode

2 aging through regulating genes impor-

tant for heme biogenesis and mitochon-

drial function.

The current study is built on the same

Sir2-HAP circuit, but this time it focuses

on the impact of varying glucose levels

on this aging circuit and single-cell life-

span. In addition to uncovering that such

variations affected the metabolic states

associated with Mode 1 and Mode 2 ag-

ing, Liu et al. develop a stochastic model

to investigate the effects of varying

glucose levels on yeast cells microfluidi-

cally tracked over the course of aging.

The investigations led to the discovery

of two new lifespan extension mecha-

nisms, with the first one acting through

stabilization of the healthy state of a cell

by establishing a balance between Sir2

and HAP, and the second one acting by

causing dynamic stabilization of the sys-

tem around the healthy state on the Sir2-

HAP state space.
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Figure 1. Cellular aging trajectories influenced by an environmentally modulated gene
network
(A) Schematic of the toggle-switch network.
(B) Landscape representation of the distribution of cellular states realized at varying glucose concentra-
tions. Red and blue filled circles represent yeast cells occupying states associated with Mode 1 andMode
2 aging trajectories, respectively. Purple filled circles represent cells in the vicinity of a ‘‘longevity fixed
point’’ characterized by optimal Sir2 and HAP levels.
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Most yeast studies use 2% glucose

as the carbon source to be consistent

with previous studies. Reducing the

glucose concentration to 0.05%, which

corresponds to a calorie-restriction (CR)

regimen for yeast, is known to extend

yeast lifespan. The positive lifespan impact

of CR is not specific to yeast; CR extends

lifespan and/or promises to extend health-

span in all known model organisms and

humans,7 although the exact mechanisms

through which it causes lifespan/health-

span extension are not fully understood.

Liu et al. systematically characterized

how yeast lifespan was affected by static

glucose concentrations ranging from

0.02% to 5% and showed that 0.1%

glucose gave rise to maximal lifespan

extension formicrofluidically grown yeast.

It is important to highlight the microfluidic

nature of their experimental platform, as it

has recently been shown8 that the type of
aging platform used (microdissection on

solid media vs. microfluidic) leads to sig-

nificant differences in quantitative lifespan

outcomes.

Interestingly, compared to 0.1%

glucose, yeast lifespan was lower at

0.02% glucose despite normal growth

rate and physiology mediated by 0.02%

glucose, indicating the optimal nature of

CR observed at 0.1% glucose. To analyze

this phenomenon, the authors study a sim-

ple two-species model of the Sir2-HAP

toggle-switch network: autoregulated Sir2

and HAP levels are dependent on external

glucose, they mutually inhibit each other,

and the dynamics of an abstract damage

variable are in turn dependent on Sir2

and HAP levels (Figure 1A). The cell dies

once this damage variable crosses a

threshold. Cells starting from a ‘‘healthy’’

intermediate state of both Sir2 and HAP

will ultimately converge toward one of
two stable fixed points, as is characteristic

of toggle-switch networks. TheMode1 ag-

ing trajectory is defined by a terminal state

of high HAP and low Sir2, whereasMode 2

aging instead features high Sir2 and low

HAP at cell death. Intriguingly, Liu et al.

associate the increased longevity at 0.1%

glucose to the emergence of a stable third

state at intermediate levels of Sir2 and

HAP, which they refer to as a ‘‘longevity

fixed point’’ (LFP).

The longer cells occupy this third state

before noise pushes them to one of the

two terminal states, the better they avoid

damage accumulation and death. Sto-

chastic fluctuations of cells among the

associated basins of attraction at a given

level of external glucose, combined with

accumulation of a damage variable in a

manner that depends on Sir2 and HAP

levels, thus provide a concise framework

for interpreting their experimental data

(Figure 1B).

To characterize the impact of dynamic

glucose levels on the underlying Sir2-

HAP state space, Liu et al. first ran sto-

chastic simulations with glucose concen-

trations switching between 0.02% and

2%. With sufficiently high switching fre-

quency, one observes a distribution of

cell states with three peaks; the form of

this ‘‘seascape’’ relates to a superposition

of the 0.02% and 2.0% landscapes and

resembles the static one found for 0.1%

glucose. In this dynamic setting, Liu

et al. refer to cells occupying the third

state as being dynamically stabilized

(DS). These predictions were supported

by results from aging experiments per-

formed under glucose oscillations, where

roughly one-third of cells were found to be

in a DS state. These DS cells displayed a

much longer average lifespan (31 genera-

tions) compared to the Mode 1 and Mode

2 cells. The fraction of DS cells would be

expected to increase and then plateau

with increasing glucose switching fre-

quency, and that was indeed the case.

Along the same lines, but without the

need to augment the environmental con-

ditions, a negative feedback loop synthet-

ically introduced and tuned between Sir2

and HAP can induce limit-cycle dynamics

in the Sir2-HAP state space, thus facili-

tating balanced oscillations between

optimal Sir2 and HAP levels during aging.

Indeed, a previous study published9 by

the same researchers has shown that

extraordinarily long yeast lifespan could
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be achieved through this negative feed-

back circuit by avoiding commitment to

the terminal states.

There are noteworthy similarities be-

tween the current study’s design focus

on glucose fluctuations and intermittent

fasting (IF) regimens frequently adhered

to by humans due to their proven health

benefits.10 IF may involve an extended

period of no or very low calorie intake fol-

lowed by an unrestricted eating period.

Properly adapted to the relevant time-

scales, dynamical systems modeling of

the healthspan-affecting pathways oper-

ational in human cells can provide test-

able insights into the effects of varying IF

frequencies and calorie levels on human

healthspan.

A natural direction for improvement to

the current study is the need for integration

of the full set of lifespan extension path-

ways. For example, extending the current

Sir2-HAP network by the TOR pathway

could potentially help some of the experi-

mental results better align with the compu-

tational predictions. For example, experi-

mentally observed lifespan extension by

Sir2 overexpression in 0.1% glucose was

not as much as what was predicted by

the model. Also, more comprehensive

experimental characterizations are needed

to understandwhy the average lifespan (24

generations) of the aging population con-

taining DS cells under glucose fluctuations

was slightly shorter than the average life-

span (26 generations) at the static 0.1%

glucose condition.

Results from this study underscore the

importance of considering environmental
678 Cell Systems 15, August 21, 2024
fluctuations in the study of aging. The

findings reveal that dynamic environ-

mental inputs can significantly influence

the aging process and that it is possible

to rationally reprogram aging trajectories

by modulating these inputs. The study

also provides valuable biological insights

into the metabolic shifts associated with

different aging phenotypes in fluctuating

environments. Future research could

build on these findings by exploring other

environmental factors and their interac-

tions with genetic networks. Additionally,

studying the effects of environmental fluc-

tuations in other model organisms and in

more complex systems could provide

further insights into the universality of

these mechanisms. By continuing to inte-

grate systems-level approaches and

dynamical systems modeling applied to

genetic circuits, researchers can uncover

new strategies to promote healthy aging

and extend lifespan across different

species.
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