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Genetic heterogeneity of metastatic dissemination has proven challenging to

identify exploitable markers of metastasis; this bottom-up approach has caused

a stalemate between advances in metastasis and the late stage of the disease.

Advancements in quantitative cellular imaging have allowed the detection of

morphological phenotype changes specific to metastasis, the morphological

changes connected to the underlying complex signaling pathways, and a robust

readout of metastatic cell state. This review focuses on the recent machine and

deep learning developments to gain detailed information about the metastatic

cell state using light microscopy. We describe the latest studies using

quantitative cell imaging approaches to identify cell appearance-based

metastatic patterns. We discuss how quantitative cancer biologists can use

these frameworks to work backward toward exploitable hidden drivers in the

metastatic cascade and pioneering new Frontier drug discoveries specific for

metastasis.
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Cannot grind and find them all: Genomics hits the
metastatic wall

While we have made enormous progress regarding our understanding of cancer, it is

still a leading cause of death worldwide. The cause of this high lethality is primarily due to

the metastatic stage of the disease; metastasis occurs when cells from the primary tumor

leave the local environment and colonize a distant organ (Bogenrieder and Herlyn, 2003;

Gupta and Massagué, 2006; Chiang and Massagué, 2008; Hanahan and Weinberg, 2011;

Reddy et al., 2012; Dillekås et al., 2016). Metastasis, and therefore therapy resistance, is the

last Frontier of cancer treatment; it has been shown that metastasis and therapy-resistant

cells share many common properties (Fares et al., 2020). However, less than 1% of the cells

from the primary location can create tumors in distant organs. While metastatic cells may

be rare events, they possess extraordinary abilities to survive an onslaught of insults that

the cells must endure disseminating, colonizing, and thriving in a newmicroenvironment.

Metastatic cells must possess cell properties that are entirely different from their primary,

stationary counterparts. This way, metastatic cells adapt to evolutionary pressures

(Schardt et al., 2005) by creating polyclonal populations, some of which survive each
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stressor (Cheung et al., 2016; Lo et al., 2020; Kok et al., 2021) to

ultimately thrive in distinct niches (Gal et al., 2015; Piskounova

et al., 2015; Tasdogan et al., 2020) from the primary tumor site.

Surprisingly, the deluge of mutations from genomic studies has

landed on stereotypical metastatic signaling states (Klein, 2009)

reminiscent of the Waddington landscape (Waddington, 1959),

although not converging on the metastatic target pathway. This

has led the field to use phenotypic-driven interrogations of

metastasis to work toward identifying the hidden drivers in

the metastatic cell state (Figure 1).

Appearances can be revealing

Subtle changes in metastatic cell states should manifest

themselves in detectable phenotypic changes. This change is

due to the morphological connection to the cytoskeleton

changes necessary for invasion in the metastatic cascade.

Initially, these changes were quantified through static shape

morphometrics and connected to changes in metastatic

potential. Cell appearance is a reliable monitor of cell

signaling pathways (Bakal et al., 2007; Yin et al., 2013;

Goodman and Carpenter, 2016; Gordonov et al., 2016;

Pascual-Vargas et al., 2017; Sero and Bakal, 2017; Scheeder

et al., 2018) due to the strong connection to the cytoskeleton

(Moujaber and Stochaj, 2020), which is readout metastatic

expression profiles (Nguyen et al., 2016), and a cell’s ability to

invade (Minn et al., 2005). Recent studies have shown explicitly

that cell appearance phenotypes have a solid connection to the

metastatic phenotype (Cooper et al., 2015; Lyons et al., 2016; Wu

et al., 2020). The use of morphological changes to identify

invasive cancers stems from recognizing the epithelial to

mesenchymal transition (EMT) (Li and Balazsi, 2018; Lu and

Kang, 2019). Not only this, but pathologists often see gross

morphological changes from primary to metastatic site biopsy

samples, which have long been used for disease staging and

grading (Lee et al., 2020). In this review, we highlight studies that

not only pushed forward themorphological analysis of metastatic

cells but offer an experimental and analytical platform, which are

quantitative metastatic assays for probing the metastatic single-

cell state.

In the beginning, there were shapes:
Two-dimensional cell morphology
and machine learning to classify
metastatic cells

Using two-dimensional (2D) cell culture has taught us the

value of cell appearance and its relation to metastatic ability.

Recent work has shown 2D cell shape to be a readout of

metastatic cell state (Holenstein et al., 2019; Riehl et al.,

2021). Lyons et al. showed a deep connection between shape

and metastatic potential compared to paired non-metastatic

parental cells (Lyons et al., 2016). They investigated the effect

of three different surfaces with varying hydrophobicity; glass

detergent washed and air-dried, glass acid-etched and air-dried,

and siliconized ethanol-treated. Using four paired

osteosarcomas, one with low metastatic potential and one

with high metastatic potential from the same cell lineage, they

showed that metastatic cells display different morphometric

features using twenty-nine cellular and nuclear shape features.

We must note that they focused on interpretable geometric shape

features and not expansion shape features. They distilled these

twenty-nine shape features into five morphological properties:

projected cell size, cell roundness versus elongation, shape

variability, nuclear size, and nuclear shape. They noted that

high metastatic potential cells differ from their low potential

counterparts in projected cell area and cell volume, which were

experimentally validated. Examining only the nuclear shape

FIGURE 1
Metastatic landscape connects to cell appearance through the underlying signaling networks determined by the various mutations.
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features showed no low versus high metastatic potential trends.

This highlights the pitfalls of using one morphometric as a

classification tool, especially with prospects for clinical

applications. However, they overcome this using machine

learning feeding all shape features into a multilayer

perceptron to classify cells. They showed their classifier had

good accuracy against high and low cells from the same

lineages across cell surfaces and aggregate classes such as high

versus lowmetastatic potential. This early work, and others like it,

laid the foundation for computer vision and machine learning

techniques to investigate metastatic cells.

Wu and company have repeatedly continued the exploration

of shape features in 2D. Building upon their work in pancreatic

ductal adenocarcinoma (Wu et al., 2015), they investigated the

heredity of morphological features in single-cell clones (SCC) of

metastatic breast cancer cell lines. They found that each clone

displayed a distinct morphology from which they investigated

14 SCC and their matched parental cell line. They quantified the

cell morphology by extracting two hundred and fifteen cellular

and nuclear morphometrics and then distilling them into seven

distinct morphological profiles using unsupervised clustering

methods. Within the clones, there was morphological

heterogeneity, albeit at a much lower degree, compared to the

parental line indicating there are heritable morphological traits.

With these quantitative morphologies relating to cell appearance,

they sought to see how the different morphologies affect

metastatic potential in vivo. They implanted each of the seven

morphological profiles into the mouse mammary fat pad and

examined the metastatic potential of each morphology. They

observed that depending on the morphology class, there were

differences in metastatic potential and tumorigenesis compared

to the parental line. They found a range of aggressiveness of the

SCC: low tumorigenicity, tumorigenic, metastatic, and

hypermetastatic. While they had several interesting findings

regarding metastasis, tumor volume, and circulating tumor

cells burden, they identified that cells with a high aspect ratio

do not have higher metastatic potential, contradicting other

findings in Lyons et al. However, SCCs with the same

morphology displayed similar in vivo outcomes of

tumorigenicity, circulating tumor cells, and metastatic

potential; this highlights the connection between cellular

appearance and metastasis. Stratifying the morphologies into

high and low metastatic potential with corresponding gene

expression profiles allowed Wu et al. to identify potential

predictive metastasis genes for their cell line of choice. This

highlights the immense impact that homogenous heritable

morphological traits condense the heterogeneous genomic

landscape to stereotypical cell morphologies.

Functionalized coated cell surfaces
further 2D morphological profiling of
metastasis

Instead of using traditional plastic culture dishes or plain

glass slides, Hasan et al. used 2D light microscopy of metastatic

glioblastoma and astrocytes on functionalized glass coverslips

(Hasan et al., 2018). They trained a supervised classifier with an

FIGURE 2
Cell appearance from live cell imaging (A) is quantified through supervised feature extraction, consisting of dozens of features that describe the
cell appearance in many ways. Often these are clustered (B) into classes which feed into a machine-learned model for classification (C). Live cell
images (D) are inputs for various deep learning neural networks (E) for unsupervised feature extraction. The features are used for the classification of
metastatic cells (F). These features are often a black box of unknown representation of cell appearance; however, there are methods to
decipher the critical cellular properties through image reconstruction (G).
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accuracy of 82% to discriminate between non-cancerous

astrocytes and metastatic glioblastoma cells taken from a

patient biopsy. They previously developed a glass-coated

coverslip with anti-EGFR aptamer, which showed a high

affinity for cells that overexpress EGFR on the cell surface

(Wan et al., 2010; Wan et al., 2013; Mahmood et al., 2015;

Mansur et al., 2018). Building upon this in the current study, they

laid the foundation to develop a framework to identify circulating

tumor cells from blood samples in glioblastoma patients. The

captured cells by the aptamer moved about over time while

anchored to the coverslip to achieve short-term time-lapse

imaging. They extracted multiple features such as area,

perimeter, and center of mass of each cell for each time

frame, each of which built different segmentation models such

as aspect ratio, convexity, and best-fitted ellipse. They tracked the

morphodynamic changes using the feature vectors of each

segmentation model using the Hausdorff distance between

time frames. This information was fed into three machine

learning classifiers, Support Vector Machine (SVM), Naïve

Bayes Classifier, and Random Forest Tree. They decided that

the Naïve Bayes Classifier yielded the best classification results.

They presented a unique and label-free approach that can be

quickly implemented using standard instruments and low

computational power in a clinical setting. The pipeline is

essential for those that work with cells that are hard to

transfect or for samples one may not want to perturb using

fluorescent proteins.

Alizadeh et al. used fluorescent imaging of over a dozen

cancer cell lines, with varying metastatic potential, on

fibronectin-coated glass coverslips (Alizadeh et al., 2020). To

discriminate between populations, they quantified the texture of

the cell, the spreading of the cell, and irregular cell shape, all of

which were fed into an SVM or shallow layered Perceptron. They

found that cell and nuclei geometric shape features, interpreted

as cellular spread size, elongation, and boundary irregularity,

reliably represented a cell over experimental replicates and cell

types. However, label-free features such as texture are even more

reliable representations of cell states. Of note in this study was the

comparison of high (MDA-MB-231), low metastatic (MCF7),

and normal breast cells (MCF10A) and a range of linearly

progressed matched osteosarcoma cancer cell lines. Using the

extracted morphological information in the reduced principal

component (PCA) space, they showed no linear progression

from normal to low then high metastatic morphological space;

instead, there is some overlap in each morphometric category.

For instance, in cell hull geometry and waviness (Fourier

transform) of the normal breast cells lie in the space between

low and high metastatic potential breast cancer cell lines.

However, the low metastatic potential lies between normal

and high metastatic features for grayscale morphological

features. For the osteosarcoma cell lines, grayscale and cell

geometry features showed high separation between the normal

and osteosarcoma cancer lines.

In contrast, waviness and hull geometry highly overlap all cell

lines. This led them to test the morphological features at the

single-cell level using an SVM or Perceptron. They found that

morphometric-based features are more feature-rich for

classification. Based on this, they can discriminate between the

high and low metastatic cells of osteosarcoma and breast cancer

cell lines. This led them to conclude that there may be

stereotypical morphological transformations in the metastatic

process. However, based on this study alone, it cannot be

concluded how many stereotypical categories there may be for

metastatic cells. This leaves an opportunity for long-term

morphometric analysis of the development of normal to

metastatic cells over many cancer types (Figure 2).

2.5D imaging and interpretable deep
learning

Zaritsky et al. used label-free imaging and interpretable deep

learning to identify cellular properties that discriminated

between high and low metastatic potential patient-derived

xenografted (PDX) melanoma cells (Zaritsky et al., 2021).

While not strictly 2D, they imaged the PDXs atop a thick

collagen matrix to negate the physical forces of a plastic/glass

and the morphological homogeneity plastic culture dishes

impose. They imaged the metastatic cells over multiple time

durations to gather morphological dynamics. They noticed that

metastatic cells were not particularly migratory and were defined

mainly by rounded shape, with surface membrane blebbing,

regardless of metastatic potential; this is consistent with other

studies’ patient biopsies atop collage (Sadok et al., 2015). They

hypothesized that neither shape nor migratory ability would yield

discriminative power between high and low metastatic cells.

Instead, the discriminative power may come from visually

unstructured information in the images; to this end, they

developed interpretable deep learned models. They developed

an autoencoder, which comprises a deep convolutional neural

network (CNN) to encode the unstructured latent cell

information contained in the images. From this, they

identified a latent cell descriptor that contains a compressed

version of single-cell image information.

Using this latent cell descriptor, they could discriminate

between a panel of metastatic melanoma cell lines against fetal

foreskin melanocytes. Single-cell clones were created within the

metastatic cell lines, and the latent descriptor could discern the

parental line from the clonal line. Furthermore, they could

successfully discriminate between the cell line and PDX

metastatic melanoma panels. Incongruent with the other

studies mentioned in this review, cell shape performed worse

than the latent cell descriptor, and temporal information did not

increase the latent descriptor’s discriminative power. They could

discriminate between high and low metastatic melanoma PDXs

using the latent cell descriptor and linear discriminate analysis
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machine learning classifier. While exploring existing deep

learning models on a unique physiologically relevant 2D

system, the authors investigated the latent descriptor encoded

in cell properties. They identified that pseudopodial extensions

and interior light scattering properties of the cell discriminate

between high and low metastatic melanoma. It is important to

note that many studies focused on using machine learning and

deep learning methods to identify differences in morphologies of

metastatic cells; most studies have not used interpretable

methods. This is severely lacking in most investigations, yet it

is critical to work backward from phenotype to actionable

signaling targets.

Integrating 3D cell morphology and
dynamic information for metastatic
profiling

While static imaging in 2D has profoundly impacted the

field, it was always apparent that those studies were missing the

mechanical forces that affect the cytoskeleton and, thus, the

signaling pathways to which it connects. Furthermore,

stereotyped cell behaviors can be identified from cell actions

imaged over time (Tweedy et al., 2019). Here we focus on studies

that have exploited three-dimensional (3D) and time-lapsed

imaging of dynamic morphological changes.

Elbez et al. developed a unique approach to image single-cell

dynamic morphological phenotypes using machine learning and

magneto-rotation, simulating circulating tumor cell

morphologies in 3D. (Elbez et al., 2021). They developed

magnetic nanoparticles that are endocytosed into the cell,

which activated green-fluorescent protein (GFP). They used

an external oscillating magnetic field to suspend and rotate

cells with the nanoparticles in a microfluidic device so they

could image 3D morphological deformation. Using the

supervised Adaboost machine learning method of single cells

(identified and segmented using GFP), they were able to identify

metastatic cells (MDA-MB-231) that had undergone the EMT,

cells that were not metastatic (MCF-7) with an f1 score of 0.965.

Next, they used the prostate cancer cell line PC-3 as a control,

then forced PC-3 cells to undergo EMT and become HR-14 cells

to test if their classifier could identify the same cell lineage. Still,

they could differentiate between the two states of the same cell

lineage with different cell states. They used the unsupervised

K-means clustering method (with a strict homogeneity score of

0.95) to identify seven distinct morphological phenotypes within

the populations. They followed up on this and determined they

could differentiate between functional phenotypes of high and

lowmigratory and invasive cells using theMDA-MB-231 cell line

and a Boyden chamber. Unfortunately, they do not identify the

morphological phenotypes that either machine-learned method

used to discriminate between the populations. However, this can

be remedied using interpretable learning methods.

Recently it was observed that metastatic breast cancer cell lines

embedded in collagen exhibited morphological phenotype

transitions that allowed them to efficiently traverse non-uniform

matrixes that mimic the ECM (Eddy et al., 2021). They developed

machine learning models to quantify cell shape dynamics in 3D for

up to 24 h. Eddy et al. quantified cell appearance using twenty-one

shape geometric features, including cell size, backbone curvature,

surface topography, and deviation from circle shape. They found the

geometric space of the cells sample is similar to random walk;

however, they found the morphology dynamics are subdiffusive

while having superdiffusive properties in actual 3D space.

Interestingly, they found the same cells exhibited increased

morphodynamics sampling of geometric space on 2D surfaces

than 3D embedded in ECM; this again highlights meaningful

differences between 3D and 2D morphological analysis. Using

manually labeled cells, they trained an SVM to classify them into

four distinct cell morphological phenotypes, with an accuracy of

88%. They classified the four morphological phenotypes: actin-

enriched leading edge, small blebbing, filopodial, and

lamellipodial. They focused on these four morphological

phenotypes due to their tight connection to molecular profiles:

actin-enriched leading edge has elevated actin protrusions; small

blebbing has high cortical stress, which drives the blebbing; filopodial

and lamellipodial phenotypes have strong ECM adhesions with

polarized bodies, where the filopodia distinguish themselves with

F-actin bundles running across the cell body, while the lamellipodia

distinguish itself through cellular fan shapes. They perturbed the

signaling networks attached to these phenotypes and changed the

ECMhomogeneity. Focusing on disrupting the RHO/Rock signaling

pathway, they discovered that perturbations did not force cells to

favor one phenotype over another. Instead, it altered the

morphodynamics of phenotypes. Decreasing RHO expression led

to amoeboid-to-mesenchymal transitions through the actin-enrich

and lamellipodial phenotypes.

In contrast, activation of RHO led to increased

morphodynamics overall, which enriched the blebbing

morphological phenotype. Not only does this shed light on the

morphological plasticity to traverse heterogeneous ECM through

phenotype switching, but this study also highlights the

interpretable use of machine learning critical for furthering

metastatic research. Using morphology, the quantified cell

appearance differences have been connected to enhanced cell

cycle progression, especially important for micro-metastases

(Mohan et al., 2019; Molinie et al., 2019). Multiple studies have

followed up on their metastatic cell appearance metrics in vivo

using a mouse model. Indeed, these cell appearance changes

identified using A.I. have translated to in vivo metastatic

potential. While it may seem evident that anti-cytoskeletal

therapies will inhibit metastasis (Fife et al., 2014; Gandalovičová

et al., 2017; Aseervatham, 2020), these drugs often are non-specific

to metastatic tumors, are highly cytotoxic and cardiotoxic (Stehn

et al., 2013), and often fail to suppress metastasis. It is believed this

is due to cytoskeletal plasticity, highlighted in Eddy et al.
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Furthering the interrogation between 3D morphology and

metastatic cell state, Driscoll et al. developed u-shape3D, which

identifies morphological motifs of cells migrating through

microenvironments using high-resolution 3D light sheet

microscopy (Driscoll et al., 2019). U-shape3D was a launching

point for Segal et al. to investigate the morphological motif

changes that metastatic Ewing Sarcoma cells undergo while

migrating through various microenvironments in the Zebrafish

model system (Segal et al., 2022). They found that the two

Ewing Sarcoma cell lines have single-cell morphological

distribution changes as the cell migrates through different parts

of the Zebrafish. To understand the meaning of these morphotype

changes, they mapped the single-cell morphotypes to clusters in the

Principal Component space and qualitatively described these

clusters for interpretability. They found that the TC32 cell line

shared morphotypes in the perivitelline space (PVS) and caudal

hemopoietic tissue (CHT). In contrast, cells in the hindbrain

ventricle (HBT) exhibited more protrusions and larger cell

shapes. While TC71 distributions in the PVS and HBV shifted to

a rounded morphotype compared to cells in the CHT. When

investigating the effect of changes in EF1 expression, the gene

fusion which characterizes Ewing Sarcoma, they found that loss

of EF1 led to site-specific morphotype changes within the Zebrafish.

This study highlights that the expression landscape will affect the

cells’ morphological plasticity in response to various

microenvironments in vivo.

Future prospective and concluding
remarks

The diagnostic applications derived from these approaches

will allow clinicians to identify metastatic cells in biopsy samples.

While not used previously in identifying metastatic cells, we want

to highlight Imaging Flow Cytometry (IFC). The pairing of deep

learning and machine learning with different imaging

technologies, such as IFC, can interrogate the metastatic stage

in primary samples as part of the pathology pipeline. Given that

these samples can be fragile and genetic engineering can perturb

the cell state, IFC can probe the cell using cell light scatter and

brightfield images, both of which require no labels and have been

used for cancer classification with deep and machine learning.

We have highlighted multiple studies investigating cell

appearance in varying spatiotemporal imaging modalities as a

readout of metastatic potential to accelerate the discovery of

metastatic-specific features. Rather than focusing on a specific

gene, these works have levied the rich information found in

images of metastatic cancer cells, overcoming the limits of using

the genetic code for metastatic profiling.
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