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Macrophages must respond appropriately to pathogens and
other pro-inflammatory stimuli in order to perform their roles
in fighting infection. One way in which inflammatory stimuli
can vary is in their dynamics—that is, the amplitude and
duration of stimulus experienced by the cell. In this study, we
performed long-term live cell imaging in a microfluidic device
to investigate how the pro-inflammatory genes IRF1, CXCL10,
and CXCL9 respond to dynamic interferon-gamma (IFNγ)
stimulation. We found that IRF1 responds to low concentra-
tion or short duration IFNγ stimulation, whereas CXCL10 and
CXCL9 require longer or higherconcentration stimulation to
be expressed. We also investigated the heterogeneity in the
expression of each gene and found that CXCL10 and CXCL9
have substantial cell-to-cell variability. In particular, the
expression of CXCL10 appears to be largely stochastic with a
subpopulation of nonresponding cells across all the stimulation
conditions tested. We developed both deterministic and sto-
chastic models for the expression of each gene. Our modeling
analysis revealed that the heterogeneity in CXCL10 can be
attributed to a slow chromatin-opening step that is on a similar
timescale to that of adaptation of the upstream signal. In this
way, CXCL10 expression in individual cells can remain sto-
chastic in response to each pulse of repeated stimulation,
which we also validated by experiments. Together, we conclude
that pro-inflammatory genes in the same signaling pathway can
respond to dynamic IFNγ stimulus with very different response
features and that upstream signal adaptation can contribute to
shaping heterogeneous gene expression.

Cells respond to many external signals by initiating gene
expression programs to elicit appropriate physiological re-
sponses. However, even within a clonal population, there can
be significant variability in gene expression among individual
cells (1–4). Several mechanisms, including environmental
fluctuations, epigenetic regulation, and the inherent stochas-
ticity of biochemical reactions, can potentially contribute to
this heterogeneity (5–9). Importantly, cell-to-cell variability in
gene expression can lead to functional consequences for
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development, disease progression, and response to therapy (10,
11). For example, some cancer cells in a tumor can be more
resistant to chemotherapy than others due to differences in the
expression of genes involved in drug metabolism or DNA
repair (12–14). Similarly, during hematopoiesis, the high
expression heterogeneity of the stem cell marker Sca-1 leads to
different fate decisions toward erythroid or myeloid lineages
(15). In this study, we focus on heterogeneity in the immune
response and investigate the dynamics of gene expression in
single macrophage cells.

Macrophages are innate immune cells that perform a diverse
range of functions in the body and adapt their functional
response to their local signaling environment. Macrophage
phenotypes exist along a continuous spectrum and single cells
dynamically shift between states (16). Here, we focus on the pro-
inflammatory M1 phenotype, wherein macrophages play anti-
microbial roles and promote inflammatory immune responses.
This phenotype occurs in vivo in response to bacterial or viral
infections and is modeled in vitro by exposure to lipopolysac-
charide (LPS) or interferon-gamma (IFNγ) (17).

Macrophages are highly heterogeneous cells, and macro-
phage heterogeneity has been studied in vitro both before and
after infection (18–20). In mouse bone marrow–derived
macrophages infected with Salmonella enterica, infected
macrophages adopt diverse gene expression states with varying
levels of pro-inflammatory gene expression (21). In diseases
such as tuberculosis, variability in how macrophages respond
to infection leads to dramatic differences in clinical outcome
(22, 23). This macrophage heterogeneity is also seen in vivo,
where macrophages have diverse functions and gene expres-
sion patterns in many organs, including the lung (24), brain
(25), and peritoneum (26), as well as in response to inflam-
mation (27).

Single-cell RNA sequencing has uncovered gene expression
heterogeneity among individual macrophages and other
myeloid cells exposed to pro-inflammatory signals such as LPS
and IFNγ in vitro (28–31). These experiments eliminate the
element of bacterial heterogeneity and have shown that het-
erogeneity is present in aspects of immune responses other
than direct interaction with a pathogen. However, these single-
cell RNA sequencing studies cannot reveal how single-cell
J. Biol. Chem. (2023) 299(10) 105230 1
Biochemistry and Molecular Biology. This is an open access article under the CC

https://doi.org/10.1016/j.jbc.2023.105230
Delta:1_given name
https://orcid.org/0000-0001-6115-5020
Delta:1_surname
https://orcid.org/0000-0002-9328-8271
Delta:1_given name
https://orcid.org/0000-0003-3471-4637
Delta:1_surname
https://orcid.org/0000-0003-0709-3548
Delta:1_given name
mailto:nhao@ucsd.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbc.2023.105230&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Dynamic gene expression and heterogeneity in macrophages
transcriptional patterns vary in time in response to pro-
inflammatory stimuli. Bulk studies show that pro-
inflammatory gene expression is highly temporally regulated,
with sets of earlier primary response genes and later secondary
response genes that each share certain elements of their
epigenetic and transcriptional regulation (32, 33). However,
the intersection of heterogeneity and gene expression timing
remains poorly understood.

The primary pathway in which pro-inflammatory gene
expression in macrophages has been studied at the single-cell
level over time is in genes induced by the transcription factor
(TF) NFκB, which translocates to the nucleus upon stimulation
with pathogens, pathogen analogs, and certain other pro-
inflammatory stimuli. NFκB activates different gene expres-
sion programs based on its residence time dynamics in the
nucleus, and the residence time dynamics depend on the
identity of the upstream signal and can vary between clonal
cells (34–37). Varied TF dynamics leading to differential gene
expression and cellular outcome have also been seen in other
systems such as the yeast Msn2 system and p53 expression in
the MCF7 breast cancer cell line (38–40).

These studies used quantitative analysis of single-cell time
traces coupled with mathematical modeling to uncover the
gene expression networks and mechanisms that encode and
decode complex environmental signals, since bulk measure-
ments of dynamical behavior can distort individual patterns
due to averaging over different single cells (39). Observing
gene expression output in response to dynamic upstream
signals can reveal elements of network structure, whether the
dynamic upstream signal is natural (e.g., extracellular signal-
regulated kinase signaling in response to epidermal growth
factor versus nerve growth factor (41)) and/or is exogenously
applied (38, 42, 43). Mathematical modeling can rule in or out
possible underlying network motifs and mechanisms of
epigenetic regulation of gene expression, as well as suggesting
testable perturbations that will change the dynamical behavior
of the system (42, 44).

Macrophage signal processing and heterogeneity is essential
for properly modulating immune responses both at initial
pathogen recognition and within the later stages of the innate
and adaptive immune response; however, signal processing in
the later stages of the innate and adaptive immune response is
poorly studied. To this end, we focused on the cytokine IFNγ,
which polarizes macrophages to an M1 phenotype but is
secreted by other immune cells rather than being directly
associated with a pathogen. Macrophages encounter IFNγ in
various temporal patterns during the immune response as it is
secreted by natural killer cells during the innate immune
response and CD4 Th1 cells during the adaptive immune
response (45, 46). IFNγ binds to the IFNγ receptor and signals
through the JAK-STAT signaling pathway, leading to STAT1
phosphorylation, homodimerization, and translocation into
the nucleus where the phosphorylated STAT1 homodimer acts
as a TF for the downstream gene expression program (45).
Misregulation of IFNγ signaling is pervasive in disease, with
too little IFNγ leading to poor infection response, too much
IFNγ leading to excessive inflammation and autoimmune
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diseases, and dysregulation of IFNγ being important in tumor
immunology (47–49).

In this study, we investigate the single-cell expression dy-
namics of the genes IRF1, CXCL10, and CXCL9, which are all
induced by STAT1 in response to IFNγ (50–52). IRF1 and
CXCL10 are representative primary response genes with
different kinetics (early for IRF1, later for CXCL10), and CXCL9
is a secondary response gene (52). IRF1 encodes a TF important
for the expression of many downstream pro-inflammatory
genes (52–55). CXCL10 and CXCL9 encode chemokines that
recruit T cells and other cells expressing the CXC chemokine
receptor 3 to the site of inflammation and have been implicated
in a number of disease conditions (56–58). As an example,
CXCL10 expression is important early in SARS-CoV-2 infection
to create an antiviral environment, but later in infection, high
CXCL10 andCXCL9 contribute to the cytokine storm that leads
to severe disease (59, 60).
Results

Quadruple-reporter macrophage cell lines to study IFNγ-
induced gene expression

We used CRISPR/Cas9 genome editing to create a RAW
264.7 mouse macrophage-like cell line that expressed endog-
enous fluorescent reporters for each of IRF1, CXCL10, and
CXCL9 in the same single cells, as well as a nuclear marker for
use in image analysis (Fig. 1A and Experimental procedures).
RAW 264.7 cells have been used as a model for much of the
work studying NFκB signaling dynamics in macrophages (19,
34, 61–64), gene regulation in pro-inflammatory macrophages
(65–67), and in vitro macrophage models for mycobacterial
infection (68, 69). The cell line created in our study is het-
erozygous for the SYFP2 tag at the IRF1 locus and homozy-
gous for both the mCerulean knock-in at the CXCL10 locus
and the mCherry knock-in at the CXCL9 locus. For CXCL10
and CXCL9, the fluorescent protein DNA sequence is con-
nected to the endogenous chemokine DNA sequence by a T2A
translational skip site, ensuring that the endogenous chemo-
kine can be secreted normally and the fluorescent reporter
protein attached to a nuclear localization signal (NLS) is
retained in the nucleus where it can be measured (Fig. 1A) (70,
71). A list of all cell lines created in this work can be found in
Table S1. To confirm that STAT1 signaling is not perturbed in
our quadruple knock-in cell line, we have shown using
quantitative reverse transcription polymerase chain reaction
(RT-qPCR) that the expression level of IRF1, a gene immedi-
ately downstream of STAT1, is unchanged between untagged
RAW 264.7 cells and the quadruple knock-in cell line created
here (Fig. S1A).

We then exposed these cells to IFNγ in either a 24-well plate
or a microfluidic device for 31 h, taking fluorescence images
every hour. We used an image-processing pipeline to extract
fluorescence measurements for each gene over time in single
cells (Experimental procedures). The microfluidic device al-
lows us to expose the cells to time-variant stimulus patterns
and have media turnover in less than 15 min (Fig. 1B) (72).
Sample single-cell traces are shown in Figure 1C and a sample
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Figure 1. Endogenous CRISPR knock-in cells for measuring IFNγ-induced gene expression in single macrophage cells over time. A, schematic of cell
line construction. B, diagram of microfluidic chip and setup used in these experiments. C, IRF1, CXCL10, and CXCL9 gene expression responses to 10 ng/ml
IFNγ in a 24-well plate. In the top row, each gray line is a cell, with five traces colored as examples. The bottom row shows the same data as heatmaps with
each row representing one cell. The heatmaps are sorted by the maximum fluorescence value for each cell for each gene, resulting in the sort order being
different for each of the three genes. IFNγ is added at time 0. Color in the heatmaps represents gene expression fluorescence. Purple shading indicates time
when the cells are exposed to IFNγ. D, sample images of cells experiencing IFNγ stimulation. Single cells are outlined over time, with the same color outline
showing the same cell and its offspring. Scale bar on top left image represents 50 μm. E, schematic of sample traces for IRF1, CXCL10, and CXCL9 showing
the features extracted from each trace. IFNγ, interferon-gamma.

Dynamic gene expression and heterogeneity in macrophages
field of view in Figure 1D, where we can see substantial het-
erogeneity in CXCL10 and CXCL9 expression between cells. A
sample movie for cells experiencing 10 ng/mL IFNγ can be
seen in Supplemental Movie 1.
We can extract several features from these traces that
together describe the response for each gene (Fig. 1E). We are
also interested in how these features correlate with each other
and change in response to dynamic stimulation, which we will
J. Biol. Chem. (2023) 299(10) 105230 3
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describe below. For each gene, we measure the lag time before
protein fluorescence can be measured, as well as the maximum
expression amplitude (Fig. S1, K, L, P, Q, U and V). Addi-
tionally, for CXCL10, we measure the slope of the response
and for IRF1, the width of the peak and the time at the
maximum amplitude (Fig. S1, M, N and R).

To confirm that IFNγ does not induce global changes in
gene expression, we measured nuclear marker expression
upon IFNγ stimulation and saw that its levels remain constant
(Fig. S1C). We also confirmed that the pre-stimulus expression
levels of IRF1, CXCL10, and CXCL9 do not correlate with
their eventual maximum fluorescence levels (Fig. S1, D–G). To
determine if there is correlation between these genes on a
single-cell level, we correlated maximal expression levels of
IRF1, CXCL10, and CXCL9 and see no correlation between
IRF1 and either CXCL10 or CXCL9 and a weak positive cor-
relation between CXCL10 and CXCL9 (Fig. S1, B and H–J).
When we cross-correlate features other than amplitude of
different genes in the same cells, we see no strong correlations
(Fig. S1, O, S, T, W and X). Based on these data, we will treat
each gene independently in our analysis.
IRF1, CXCL10, and CXCL9 are expressed differently in response
to IFNγ stimulation of varying concentration or duration

To investigate how these gene expression features change in
response to dynamic stimulation, we first exposed the cells to
constant IFNγ stimulation of different concentrations. IRF1
shows fast and uniform expression in all cells, with the cells
responding even to 0.1 ng/ml IFNγ and saturating at 3 ng/ml
IFNγ. (Fig. 2, A and D). When tissue IFNγ levels have been
measured after infection, they have ranged from 0.1 ng/ml to
10 ng/ml, showing that this is a physiologically relevant range
(73, 74). The width and timing of the IRF1 peak do not vary
with the concentration of IFNγ (Fig. S2, C and D). At all
concentrations, we see that the majority of cells reach their
maximal expression around 4 - 6 h after onset of stimulation
and have a peak width around 9 h, with a minority of cells
peaking later (Fig. 2, C and D). At a single-cell level, neither
peak time nor width correlates with expression amplitude
(Fig. S2, H and I). However, we note that peak width correlates
positively with peak time. This is explained by the fact that
later peaks are due to IRF1 expression staying high after the
initial rise, resulting in a wider peak (Fig. S2J).

In contrast, CXCL10 shows slower and more heterogeneous
expression, which saturates at 10 ng/ml IFNγ and has a sharp
increase in amplitude from 0.1 ng/ml to 10 ng/ml (Fig. 2, B and
E). CXCL10 lag time does not vary with IFNγ concentration
and has a narrow and symmetric distribution (Fig. 2I), indi-
cating that cells begin to express CXCL10 at a defined time
regardless of IFNγ concentration. CXCL10 lag time also does
not correlate with gene expression amplitude on a single-cell
level (Fig. S2K). In contrast, on a population level, CXCL10
slope increases with IFNγ concentration up to 10 ng/ml, and
in single cells the slope correlates positively with CXCL10
expression amplitude (Figs. 2K and S2L). Intriguingly, we
observe that the proportion of cells that express high levels of
4 J. Biol. Chem. (2023) 299(10) 105230
CXCL10 increases with increasing IFNγ concentration, but at
all concentrations there is always a fraction of cells with very
low or no CXCL10 expression (Fig. S2N). The proportion of
these non-responding cells remains unchanged even when
IFNγ concentration is increased beyond saturation
(10–100 ng/ml) (Figs. 2B and S2, B and N). Similarly to
CXCL10, CXCL9 expression increases nonlinearly in response
to IFNγ doses from 0.1 ng/ml up to 10 ng/ml (Fig. 2F), shows
substantial heterogeneity (Fig. 2C), and has a lag time that
remains unchanged across IFNγ concentrations and is un-
correlated with expression amplitude in single cells (Figs. 2J
and S2M). However, we note that the lag time distribution for
CXCL9 is much wider than for IRF1 or CXCL10.

We next exposed the cells to 1-h, 4-h, 8-h, or constant dura-
tions of 10 ng/ml IFNγ stimulation in a microfluidic device. We
chose 10 ng/ml because it is the saturating concentration in our
system. Cells show a homogeneous IRF1 peak with a similar
amplitude and lag time across all IFNγ durations (Fig. 3,A,D and
H), while the width of the peak increases with IFNγ duration until
it saturates between 8 and 24 h (Fig. 3, A and K). For CXCL10,
increasing IFNγ duration leads nonlinearly to increased gene
expression, with 1 h of IFNγ inducing very low expression and
expression amplitude saturating between 4 h and 8 h of IFNγ
stimulation (Fig. 3,B andE). TheCXCL10 slope is also lowerwith
shorter IFNγ duration but saturates at around 4 h of stimulation
(Fig. S3B). The CXCL10 lag time is similar for all IFNγ durations
of 4 h or longer, while for 1 h of stimulation, the cells that do
express CXCL10 have a very short lag time, showing that this 1-h
stimulation only induces the earliest cells (Fig. 3I). Increasing
IFNγ duration also increases the proportion of cells that strongly
express CXCL10, but there remains a fraction of cells with very
lowCXCL10 expression even in response to constant stimulation
(Fig. 3B and S3G). CXCL9 expression increases with IFNγ
duration but does not saturate by 24 h; the cells continue to
produce CXCL9 for as long as stimulus is provided (Fig. 3, C
and F).

Taken together, these results demonstrate that IRF1 expres-
sion is fast and uniform among cells, whereas CXCL10 expres-
sion is slower and highly heterogeneous, and CXCL9 expression
is even slower than CXCL10 and also heterogeneous. IRF1 re-
sponds strongly to low-concentration or short-duration IFNγ
stimulation, while CXCL10 and CXCL9 act as high-pass filters to
filter out these lower stimuli and respond strongly only to higher-
concentration or longer-duration stimulation. We see that lag
time is invariant to dynamic stimulation (as would be expected as
cells have no knowledge of future events) and that the lag time
distributions for IRF1 and CXCL10 are narrow while the distri-
butions for CXCL9 are wider (Fig. 2, H–J). This shows that het-
erogeneity in CXCL10 expression comes from expression
amplitude rather than timing but that CXCL9 expression also
varies in timing. Other than amplitude, the features that vary
between cells or with dynamic input are CXCL10 slope, which
increases with IFNγ concentration, and IRF1 peak width, which
increases with IFNγ duration. We see no identifiable spatial
pattern in the CXCL10 and CXCL9 heterogeneity.

In addition, for CXCL10, increasing either input amplitude
or duration can increase the proportion of cells with high
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Figure 2. IRF1, CXCL10, and CXCL9 response to varying concentrations of IFNγ stimulation. A–C, gene expression responses for 0.1 to 20 ng/ml IFNγ in a
24-well plate with IFNγ added at 0 h. The top row of plots for each gene has a black line at the median and shading to the 25th and 75th percentiles, and each
row in the heatmaps in the bottom row represents one cell. Each heatmap is sorted vertically by single-cell maximum value for that specific gene. Purple
shading indicates when the cells are exposed to IFNγ. Color in the heatmaps represents gene expression amplitude. A, is IRF1, B is CXCL10, C is CXCL9. D–F,
histograms overlaid with box plots showingmaximum IRF1 (D), CXCL10 (E), and CXCL9 (F) expression in single cells for each IFNγ concentration.G, coefficient of
variation of expression at each timepoint (see Experimental procedures) for all genes across IFNγ concentrations. H–J, histograms overlaid with box plots
showing the lag time for IRF1 (H), CXCL10 (I), and CXCL9 (J) in single cells for each IFNγ concentration. K, histograms overlaidwith box plots showing the CXCL10
slope in single cells for each IFNγ concentration. For all box plots, the purple dot is themean, the purple center line is themedian, and the purple box is the 25th-
75th percentile. The gray shading shows the histogram distribution among single cells for each condition. IFNγ, interferon-gamma.

Dynamic gene expression and heterogeneity in macrophages
expression levels of the gene; however, even upon constant
stimulation with saturating concentrations of IFNγ, there re-
mains a substantial fraction of cells with low-to-no expression.
To quantify cell-to-cell variation in gene expression, we
calculated the coefficient of variation (CV) for each gene (see
Experimental procedures) and observed that CXCL10 has the
highest CVs and IRF1 has the lowest under all the stimulation
conditions tested (Figs. 2G and 3G). The CV for all genes
varies minimally across IFNγ concentrations and durations,
despite the fact that the mean expression level of CXCL10 is
altered by up to 6-fold (Figs. 2G and 3G).

Computational modeling of gene expression responses to
dynamic stimulation

We found two features of our dynamic stimulation data
particularly striking: the different ways in which each gene
either filtered out or responded to IFNγ stimulation of low
amplitude or short duration and the persistence of cells with
J. Biol. Chem. (2023) 299(10) 105230 5
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Figure 3. IRF1, CXCL10, and CXCL9 response to varying durations of IFNγ stimulation. A–C, gene expression responses for 1 h, 4 h, 8 h, and constant
10 ng/ml IFNγ stimulation in a microfluidic device with IFNγ added at 0 h. The top row of plots for each gene has a black line at the median and shading to
the 25th and 75th percentiles, and each row in the heatmap represents one cell. Each heatmap is sorted by single-cell maximum value for that specific
gene. Purple shading indicates the time during which the cells are exposed to IFNγ. Color in the heatmap corresponds to gene expression amplitude. A, is
IRF1, B is CXCL10, C is CXCL9. D–F, histograms overlaid with box plots showing maximum IRF1 (D), CXCL10 (E), and CXCL9 (F) expression in single cells for
each IFNγ duration. G, coefficient of variation of expression at each timepoint (see Experimental procedures) for all genes across IFNγ durations. H–J,
histograms overlaid with box plots showing the lag time for IRF1 (H), CXCL10 (I), and CXCL9 (J) in single cells for each IFNγ duration. K, histograms overlaid
with box plots showing the IRF1 peak width in single cells for each IFNγ duration. For all histograms overlaid with box plots, the purple dot is the mean, the
center purple line is the median, and the purple box is the 25th-75th percentile. Gray shading shows the histogram distribution among single cells for each
condition. IFNγ, interferon-gamma.

Dynamic gene expression and heterogeneity in macrophages
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low-to-no CXCL10 expression in all conditions. To investigate
the possible mechanisms of these phenomena, we constructed
deterministic and stochastic models of this signaling and gene
expression system. We began with an ordinary differential
equation (ODE) model that describes chromatin opening,
transcription initiation, mRNA synthesis, mRNA translation,
and fluorescent protein maturation, as well as degradation of
the mRNA and protein (Fig. 4A). We fit this model to the
mean protein time courses in response to IFNγ stimulation of
all concentrations and durations for each of IRF1, CXCL10,
and CXCL9 (Fig. 4C, Table S2 for best fit parameters,
A

B

C

Figure 4. Deterministic modeling of IFNγ-induced gene expression. A, sc
chromatin dynamics and gene transcription and translation for all three gene
tion model. C, ODE model without adaptation (purple dotted lines) and with ada
mean data (yellow, blue, or pink solid lines) in all IFNγ concentration and durat
peak at the same level (about 40) for each gene. Duration experiments were d
IFNγ, interferon-gamma; ODE, ordinary differential equation.
Experimental procedures for detailed description of modeling).
For CXCL10, we fit only to the first 12 h of the 24-well plate
(concentration) experiments because we see that after 12 h, the
CXCL10 response in a microfluidic device (used in the dura-
tion experiments) stops increasing, but in the plate it continues
to increase. This is likely because the cells are secreting a
paracrine effector that leads to increased CXCL10 expression
over time in the plate experiments but is washed out in the
microfluidic experiments. As we are not trying to model
paracrine effectors, we chose to ignore this region in the plate
experiments. When we compare the parameters and look at
hematic diagram of the gene expression model architecture with 3-state
s of interest (IRF1, CXCL10, and CXCL9). B, transcription factor (TF) adapta-
ptation (orange dashed lines) best fit to IRF1, CXCL10, and CXCL9 population
ion conditions. Prior to fitting, the fluorescence data here were rescaled to
one with 10 ng/ml IFNγ and concentration experiments have constant IFNγ.

J. Biol. Chem. (2023) 299(10) 105230 7
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the intermediate model states, we see that in our model
chromatin opening and transcription initiation are much
slower for CXCL10 than for IRF1 and slower for CXCL9 than
CXCL10 (Table S2 and Fig. S4A).

While this deterministic model reasonably describes the
mean response of the cells, it cannot capture the cell-to-cell
variability that we see in our data. We were particularly
interested in the striking heterogeneity in CXCL10 expression,
especially given its relatively early expression following IFNγ
stimulation. Our hypothesis was that this CXCL10 variability
may be due to slow and strongly stochastic chromatin dy-
namics. To test this hypothesis, we developed a stochastic
model to model the dynamics of individual cells and charac-
terize the distribution of responses. We used the same species
and reactions as in our deterministic model but treated them
stochastically using the direct Gillespie algorithm (75) with the
A

B

C

Figure 5. Stochastic modeling of IFNγ-induced gene expression. A–C, co
adaptation and adaptation models for constant 10 ng/ml IFNγ stimulus for I
cence of each cell as a gray line and the bottom row panels show the same
individually. Purple shading indicates when the cells (simulated or experimen
CXCL10 (E), and CXCL9 (F) maximum amplitude both experimentally (solid line)
line) stochastic models for constant stimulation of 10 ng/ml IFNγ. IFNγ, interfe
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same rates as in our fitted deterministic model. While we did
observe variability in cellular CXCL10 time traces among in-
dividual runs in our simulations, we also saw that, given long
enough stimulation time, all cells eventually express CXCL10
within the timeframe of our experiment (Fig. 5B, middle col-
umn). This results in a narrow distribution of maximal
CXCL10 expression levels in the population of cells, contrary
to what we see in experiments where even for continuous
stimulation there is a significant fraction of cells that never
express CXCL10 (Fig. 5B first column and Fig. 5E).

There could be two explanations for this discrepancy. One
possible explanation is that there is a stable subpopulation of
nonresponding cells that have CXCL10 permanently silenced
at the chromatin level and thus never express CXCL10. The
other possible explanation is that there is adaptation of the
upstream signaling pathway so that after a certain time the
D

E

F

mparison of experimental and stochastic simulation results for both no-
RF1 (A), CXCL10 (B), and CXCL9 (C). The top row panels show the fluores-
data in a heatmap. Heatmaps are sorted by maximum value for each gene
tal) are exposed to IFNγ. D–F, histograms showing distribution of IRF1 (D),
and in the no-adaptation (purple dotted line) and adaptation (orange dashed
ron-gamma.
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stimulation of downstream gene expression gets suppressed.
Thus, even for persistent upstream IFNγ stimulation, cells only
have a finite time window in which they can express CXCL10
in response to this stimulation. Previous studies have shown
that constant IFNγ stimulation leads to a peak of STAT1
nuclear translocation around 0.5-1 h after stimulation, fol-
lowed by STAT1 slowly leaving the nucleus, and that STAT1
nuclear localization is essential for its TF activity (45, 76). We
have confirmed these STAT1 dynamics in our system using
immunofluorescence for STAT1 (Fig. S4B). We have further
experimental evidence for adaptation in our IRF1 data, where
we see that upon constant IFNγ stimulation, IRF1 levels
decrease from their peak at a rate much slower than their
putative degradation rate and in fact IRF1 remains expressed at
a submaximal level for as long as stimulus is present. This can
best be explained by continued production of IRF1 at a sub-
stantial but submaximal rate due to upstream signal adaptation
(Fig. 4C, top row of IRF1 data).

To account for this adaptation of the upstream signal, we
modified our stochastic model to include a STAT1-induced
negative regulator that inhibits STAT1 in a negative feed-
back manner (Fig. 4B and S4A TF trace). This modification
sets an upper limit on the time by which CXCL10 must be
expressed in order to be expressed at all, and this results in the
simulated single-cell amplitude distribution more closely
matching the data (Fig. 5E). Adaptation improves the sto-
chastic model fit to the data for CXCL10 and CXCL9 lag time
as well (Fig. S5, B and C). We also incorporated this stimulus
adaptation back into our deterministic model and observed
that this greatly improved the agreement between the model
and the data, especially for IRF1 under constant stimulation
(Fig. 4C). When we use the stochastic model with adaptation
to compute the distribution of both the maximum amplitude
and lag time across all concentration and duration conditions,
we see that the histograms match the experimental data for
most conditions (Fig. S5D). From this, we conclude that a
combination of the slow chromatin-opening step and the up-
per limit on the time for chromatin-opening set by the time-
scale of STAT1 adaptation can produce the protein expression
of varying amplitude but defined timing that we see from
CXCL10, and that this can also produce the CXCL10 low-to-
non-responders that we see even under constant stimulation.
Response to repeated IFNγ pulses suggests slow, stochastic
chromatin opening controls CXCL10 gene expression

While our model with adaptation describes the data for
persistent and single-pulse stimulation quite well, the data
reported thus far cannot eliminate the possibility that CXCL10
is simply epigenetically silenced in the low-to-nonresponding
cells. We also cannot rule out cell cycle effects, as previous
studies have revealed that there are genes whose expression is
biased towards specific cell cycles stages and thus the cell cycle
could be a source of gene expression variability (2, 77–81). To
assess these possibilities, we performed further experiments
and analyses. To evaluate the dependence of CXCL10
expression on cell cycle progression, we grouped cells by
approximate cell cycle stage at the onset of IFNγ stimulation
and observed that cells in all stages of the cell cycle respond
similarly (Fig. S6, A and B), thus ruling out the cell cycle as a
driver of the observed heterogeneity.

To test whether CXCL10 was permanently epigenetically
silenced in the low-to-nonresponding cells, we decided to
expose our cell populations to two pulses of IFNγ separated by
a long enough interval so that any possible adaptation would
be recovered. If the cells had permanently silenced chromatin,
the cells that did not respond to the first pulse would also not
respond to the second pulse. However, if the lack of response
is due to the stochastic event of chromatin being closed during
a pulse, then some cells that are silent during the first pulse
could still respond during the second and vice versa. We first
tested this scenario in our stochastic model with adaptation,
where we simulated stimulating the cells with two 4-h pulses
of IFNγ with a 10-h off-interval. Our model predicted that all
cells would show uniform expression of IRF1 in response to
each input pulse, which is a consequence of fast chromatin
dynamics for IRF1 (Fig. 6, A and B). However, for CXCL10, the
chromatin dynamics are much slower, and so some of the cells
that did not express CXCL10 in response to the first pulse still
expressed CXCL10 in response to the second pulse (Fig. 6, A
and C). This CXCL10 result contrasts with what we would see
if CXCL10 is stably silenced, where nonresponding cells would
remain nonresponding to both pulses. The model also predicts
low CXCL9 expression, as expected for such a short stimulus
duration, but that the CXCL9 response to the second pulse will
be slightly higher than that to the first pulse given that the
chromatin at the CXCL9 locus closes slowly and so the second
pulse response is still incorporating the continued response to
the first pulse.

We performed the corresponding two-pulse experiment
with the same protocol and observed single-cell responses that
are quantitatively consistent with our model simulations
(Fig. 6, E–H). These results rule out the possibility that
CXCL10 is stably silenced in a subpopulation of cells and
support our model, in which CXCL10 expression is controlled
by slow, stochastic chromatin opening in response to an input
signal that adapts around 4 h, slightly longer than the timescale
of chromatin opening. When we categorize the cells as
responding to the first, second, both, or neither pulses, the
probability of responding to a given pulse is similar regardless
of whether the cell responds to the other pulse, further sup-
porting the stochastic nature of gene activation as predicted by
our model (Table S4). We also see that the data match the
model predictions for IRF1 and CXCL9, specifically that, as
predicted by the model, the CXCL9 response to the second
pulse is somewhat higher than to the first pulse (Fig. 6, B, D, F
and H).

We further analyzed the quantitative features of the
CXCL10 response to repeated input. To do this, we catego-
rized cells as responding to the first (+/−), second (−/+), both
(+/+), or neither (−/−) pulses. When we compare the response
to the first pulse of stimulus between +/+ cells and +/− cells,
we see that both the amplitude and slope of the first pulse
response in +/− cells are higher than that of +/+ cells (Fig. S6,
J. Biol. Chem. (2023) 299(10) 105230 9
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Figure 6. Model simulation and experimental results for cells exposed to two pulses of IFNγ stimulation. A, stochastic adaptation model results of 1000
simulated cells exposed to two 4-h pulses of 10 ng/ml IFNγwith a 10-h off period between the pulses. Line plots show each cell as a line and heatmaps show each
cell as a row. Heatmaps are sorted bymaximum fluorescence in the first 14 h after the first onset of stimulation. Purple shading indicates timewhen simulated cells
are exposed to IFNγ. B–D, the protein expressionamplitude change that each simulated cell inA achieved ineachof the twopulsewindows (frompulseonset to 9h
after the pulse ended) plotted against each other for IRF1 (B), CXCL10 (C), and CXCL9 (D). E, experimental data of cells exposed to two 4-h pulses of 10 ng/ml IFNγ
witha 10-hoff periodbetween thepulses. Lineplots showeachcell as a line andheatmaps showeach cell as a row. Heatmaps are sortedbymaximum fluorescence
in the first 14 h after the first onset of stimulation. Purple shading indicates time when cells are exposed to IFNγ. F–H, the maximum amplitude of expression that
each experimental cell in C achieved in each pulse window plotted against each other for IRF1 (F), CXCL10 (G), and CXCL9 (H). IFNγ, interferon-gamma.
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C and D). When we compare the response to the first and
second pulses in +/+ cells, we see that the slope of the second
response is higher than that of the first response (Fig. S6E).
Comparing the lag time, slope, and amplitude between the two
pulses in single +/+ cells also shows that the majority of cells
have a higher slope in their response to the second pulse
(Fig. S6, F–H). These results suggest that while CXCL10
10 J. Biol. Chem. (2023) 299(10) 105230
activation is random, the expression level and slope can be
affected by the cell’s expression history.

To further confirm the stochasticity in CXCL10 expression,
we compared IRF1, CXCL10, and CXCL9 expression in sibling
cells. For siblings that divide between 11 h and 0 h before the
addition of IFNγ, there is a weak positive correlation between
sibling pairs for expression of each of IRF1, CXCL10, and
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CXCL9, and the correlation coefficient for CXCL10 is lower
than that of IRF1 (Fig. S6, I–K). This lack of strong correlation
between siblings, especially for CXCL10, is in accord with our
repeated pulse experiment, supporting the intrinsic stochas-
ticity in gene activation as described in our model.
Discussion

In this work, we used endogenous fluorescent reporters to
determine how three different IFNγ-inducible genes decode
dynamic IFNγ stimulation in divergent ways. We found that
macrophages express IRF1 strongly in response to low-con-
centration or transient IFNγ stimulation. In contrast, IFNγ
stimulation must be higher in concentration or longer in
duration for macrophages to express CXCL10 and CXCL9.
Mechanistically, these different ways of decoding dynamic
stimulus point to different mechanisms underlying expression
of each gene. Previous work has shown that, in the absence of
signal, chromatin at the IRF1 locus is ready for transcription,
while the CXCL10 locus is slightly open but not yet tran-
scriptionally active and the CXCL9 locus has repressive
chromatin marks (82–84). These basal chromatin states align
with the fast, homogenous IRF1 expression that we see, as well
as the delayed expression of CXCL10 and the even more
delayed expression of CXCL9. While our modeling provides a
possible explanation of these delays due to the speed of
chromatin remodeling, further experimental work is needed to
elucidate the mechanisms of gene expression at each locus. For
example, we find that treatment with A485, a p300 inhibitor,
delays CXCL10 expression, pointing to p300 recruitment as
important for the timing of CXCL10 expression (Fig. S7A).

We observe relatively uniform IRF1 expression among sin-
gle cells but remarkable cell-to-cell variability in CXCL10 and
CXCL9 expression. The heterogeneity seen for CXCL10 is
particularly notable because CXCL10 is expressed relatively
early and at a high level, which are characteristics generally
associated with lower heterogeneity. Further, the existence of a
subpopulation of low-to-nonresponding cells even when
exposed to a constant saturating-concentration input is
intriguing and cannot simply be attributed to slow chromatin
kinetics. In contrast, the homogeneity in IRF1 expression and
the heterogeneity in both amplitude and timing for CXCL9
expression are expected for a fast primary response gene and a
delayed secondary response gene, respectively.

Our modeling suggests that the unique features of CXCL10
heterogeneity can be explained by slow, stochastic chromatin
opening on a similar timescale to that of upstream signal
adaptation (�4 h). As a result, cells have a defined and limited
timewindow inwhich to express CXCL10, and only a fraction of
them will be able to open their chromatin in that window and
initiate gene expression. In this way, the interplay of time scales
for chromatin activation and upstream signal adaptation can
enhance the heterogeneity in gene expression even for relatively
fast-responding genes. This idea is further supported by our
subsequent modeling and experimental analyses, showing that
CXCL10 expression can be activated stochastically at each onset
of stimulation with a similar distribution of high- and low-
responding cells. The fast chromatin closing for CXCL10 in
our model is also necessary to set this defined time window for
CXCL10 expression. In contrast, while CXCL9 also has slow
chromatin opening, in ourmodel, it has slow chromatin closing,
which leads to our result that CXCL9 is still expressed after the
input signal has adapted. This shows how the interplay of gene
expression parameters can lead to different gene expression
behaviors in response to dynamic stimulation.

Our modeling also shows that the adaptation of upstream
STAT1 signal is crucial for capturing the dynamics and het-
erogeneity of gene expression. Future work will clarify the
mechanisms of this negative regulation and identify the specific
molecular factors involved for each gene. In our modeling, we
see that the cooperativity factor for production of the negative
regulator’s mRNA is less than 1, which is unusual and could
point to additional gene regulatory steps in the production of
the negative regulator. It is also likely that there are additional
general and gene-specific forms of negative regulation in this
signaling pathway in addition to the common-to-all-genes
adaptation that we model here, as negative regulation is a key
feature of pro-inflammatory signaling. For example, it is known
that there are specific mechanisms to negatively regulate
CXCL10 expression (85–87). Including these may improve the
model fitting even more. It is also important to note that while
our data are consistent with this model of slow, stochastic
chromatin opening, there are likely additional mechanistic ele-
ments involved in CXCL10 expression. We also note that while
we assume TF in our model to be STAT1 and the three states to
be closed, open-uninitiated, and open-initiated chromatin, there
could be other interpretations of the model and further ex-
periments would be required to confirm these assumptions.

Both the dynamics and heterogeneity of gene expression
observed in this study could have important physiological
relevance for macrophage functions. The differences in gene
expression response to dynamic stimulus that we found may
underlie the thresholds at whichmacrophages perform different
tasks in response to pro-inflammatory stimulus. It is somewhat
surprising that an upstream TF such as IRF1 saturates its
expression at such a low concentration and duration of stimu-
lation, but there are likely further levels of regulation affecting
concentration and duration response for genes downstream of
IRF1. The fast decay of IRF1 upon removal of stimulus could
facilitate fast transcriptional changes when the stimulus is gone.
In contrast to IRF1, CXCL10 and CXCL9 act as high-pass filters
where they are only expressed in response to higher amounts of
stimulus, and our modeling shows that this filtering can be
partly explained by the slow chromatin opening for these genes.
This may permit the macrophage to ascertain that there is a
sufficient quantity of IFNγ to warrant recruiting T cells and
further amplifying the immune response, so that the macro-
phage does not amplify the immune response unnecessarily.
Further, the expression dynamics of different genes may enable
a time-based coordination of various functions performed by
macrophages in response to changing environmental signals.
Future work could connect these dynamics to diseases where
IFNγ signaling is perturbed. Future work connecting these
findings to macrophage responses in the context of an in vivo
J. Biol. Chem. (2023) 299(10) 105230 11
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immune response could also use macrophage models that more
closely approximate macrophages in vivo or investigate how the
response varies in different types of macrophages.

The heterogeneity in gene expression may also be func-
tionally relevant for macrophages. We speculate that the wide
distribution in gene expression may allow for more precise
tuning of total population CXCL10 output. In addition, it may
be more robust to perturbations than a system where there are
stable populations of CXCL10-expressing and CXCL10-
nonexpressing cells, as in the system seen here, a single cell
can switch between expressing CXCL10 and not expressing
CXCL10. This also allows for continued heterogeneity in
response to repeated pulses, which may be functionally useful.
Future work could engineer populations of macrophages to
either respond as our cells do or to stably express CXCL10 at a
specific level and investigate how this changes T cell recruit-
ment and immune response progression in vivo. Heterogeneity
in CXCL10 expression among genetically identical cells has
been seen previously (21, 31), and there have been reports of
heterogeneity in the expression of other secreted cytokines,
which we also see here with CXCL9 (28, 88). In dendritic cells,
different stimuli lead to different levels of heterogeneity in
expression of the Ifbn1 gene, which has been hypothesized to
be a strategy to balance responsiveness and control (28). It
would be interesting to investigate if high heterogeneity is a
common feature of secreted cytokines in the immune system.

Our work also provides an extension from the single-cell work
done on macrophage responses to primary infections to investi-
gate howmacrophages respond to cytokines that they experience
in themiddle of an immune response rather than at the beginning.
As one point of comparison, we see that under conditions of
constant IFNγ, IRF1 levels oscillate in both our experiments and
our modeling. This is reminiscent of the NFκB oscillations that
are observed in response to certain stimuli and suggests thatmore
work should be done on oscillations of pro-inflammatory TFs to
investigate if this is a more general phenomenon.

Experimental procedures

Cell culture

RAW 264.7 cells were ordered from ATCC (cat # TIB-71)
and cultured in Dulbecco’s Modified Eagle Medium
(DMEM) (Cytiva HyClone # SH30022FS) supplemented with
4500 mg/L glucose, 4.0 mM L-glutamine, 10% fetal bovine
serum, and 1% penicillin/streptomycin. Cells were cultured at
37 �C, 5% CO2, and 90% humidity.

IFNγ and A485 treatment

Cells were treated with IFNγ (Prospec Bio #CYT-358) at the
concentrations stated in the text; if not stated, then the con-
centration is 10 ng/ml, which corresponds to 100 U/ml. For
A485 treatment, cells were treated with 10 μM of A485 (Tocris
#6387) for 2 h before addition of IFNγ.

Cell line construction

We used CRISPR/Cas9 genome editing to tag genes by
knocking in fluorescent proteins at their endogenous loci. We
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designed guide RNAs (gRNAs) for CRISPR/Cas9 genome
editing using an online CRISPR tool (http://crispor.tefor.net/).
We ordered three guides from Eurofins genomics and cloned
them into pSpCas9(BB)-2A-Puro (Addgene #48139) plasmids
using a one-step restriction-ligation protocol (89). To test the
cutting efficiency of the gRNAs, we transiently transfected the
gRNA plasmids into NIH3T3 cells using Lipofectamine 2000
at a 1:3 Lipofectamine:DNA ratio. Transfected NIH3T3 cells
were selected with puromycin (1 μg/ml) for 2 days and then
grown out to a confluent 10-cm plate (2–3 days). We extracted
genomic DNA from these cells, amplified the 1kb region
around the cut site using PCR, and sent the PCR amplicon for
Sanger sequencing. The sequencing results were then analyzed
with the Synthego ICE analysis tool (https://ice.synthego.com/)
and we chose the gRNA with the best cutting efficiency.

We designed donor plasmids to have �1kb of homology on
each side of fluorescent protein insertion site and used primer
tails to synonymously mutate either the PAM site or the gRNA
recognition sequence so that the knock-in allele cannot be
edited again. We used PCR to amplify these homology arms
from the genomic DNA and to amplify the fluorescent pro-
teins from plasmids (SYFP2 from pSYFP2-C1 Addgene
#22878, mCerulean and mCherry from existing plasmids in the
lab). Donor plasmids were assembled in a pUC19 backbone
using Gibson assembly and confirmed by Sanger sequencing.
A flexible linker sequence (amino acid sequence GDGAGLIN)
was used between IRF1 and the SYFP2 tag, and a T2A
sequence was used between the protein and fluorescent tag for
CXCL10 and CXCL9 (70). This T2A sequence acts as a
translational skip site so that the endogenous chemokine can
be secreted into the media and the fluorescent protein can be
retained in the cell and so measured. We added an SV40-NLS
tag to the fluorescent proteins driven by CXCL10 and CXCL9
so that we could measure fluorescence intensity in the nucleus.
IRF1 and CXCL9 are tagged on the C-terminal end, and
CXCL10 is tagged on the N-terminal end. The nuclear marker
consists of an NLS-iRFP (90) driven by a constitutive EF1alpha
promoter (gift from Jan Soroczynski) inserted into the Tigre
locus (70). This nuclear marker greatly facilitates cell seg-
mentation and tracking. Plasmids were purified for trans-
fection using a Macherey-Nagel NucleoBond Xtra Midi EF kit
(Macherey Nagel #740422.50). A full list of plasmids can be
found below.

We used the Neon transfection system (Thermo Fisher
Scientific) to transfect the cells. 2.5 × 10

ˇ

6 RAW 264.7 cells
were used per electroporation, along with 15 μg of gRNA-Cas9
plasmid and 15 μg of donor plasmid in a 100 μL Neon tip using
R buffer. The electroporation setting was 1680V, 20 ms, 1
pulse, after which the cells were plated into one well of a 6-well
dish containing antibiotic-free DMEM. Three identical trans-
fections were done per condition. The transfected cells were
then grown to a confluent 10-cm plate (7–9 days depending on
cell viability after transfection), induced with IFNγ, and sorted
on an Aria Fusion cell sorter to select for cells expressing the
newly knocked-in fluorescence protein. Cells were sorted into
conditioned media with 20% fetal bovine serum in 96-well
plates with one cell per well and then 12 clones were grown

http://crispor.tefor.net/
https://ice.synthego.com/
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up and screened. The cell line used in this paper was created
by knocking in the nuclear marker, then tagging IRF1,
CXCL10, and CXCL9 sequentially and growing up single
clones after each knock-in.
Plasmid Function gRNA target sequence

NHB0797 pUC19 Tigre EF1a-SV40NLS iRFP Tigre nuclear marker donor plasmid
NHB0795 pSp-Cas9-2A-GFP Tigre gRNA 2 Tigre gRNA plasmid ACAGAAAACATCCCAAAGTT
NHB0866 pUC19 IRF1-mVenus Cterm donor IRF1 donor plasmid
NHB0842 pSpCas9-2A-puro IRF1 gRNA 4 IRF1 gRNA plasmid GACCCAAACTATGGTGCACA
NHB0922 pUC19 NLS-mCerulean-T2A-CXCL10 donor CXCL10 donor plasmid
NHB0881 pSpCas9-2A-puro CXCL10 gRNA 4 CXCL10 gRNA plasmid CTGATGGGGAGGCTTCCGGA
NHB1049 pUC19 mCh-NLS-T2A-CXCL9 donor CXCL9 donor plasmid
NHB0916 pSpCas9-2A-puro CXCL9 gRNA 2 CXCL9 gRNA plasmid GTTCTATTGAGTCACTGTGT

mHPRT1_q_F AGCAGTACAGCCCCAAAATG
mHPRT1_q_R ATCCAACAAAGTCTGGCCTGT
mIRF1_q_F CAACCAAATCCCAGGGCTGA
mIRF1_q_R TGCTTTGTATCGGCCTGTGT
mCXCL9_q_F TGTGGAGTTCGAGGAACCCT
mCXCL9_q_R AGTCCGGATCTAGGCAGGTT
mCXCL10_q_F ATGACGGGCCAGTGAGAATG
mCXCL10_q_R TCGTGGCAATGATCTCAACAC
mNOS2_q_F TAGACCTCAACAGAGCCCTCA
mNOS2_q_R CTCGAAGGTGAGCTGAACGA
mGBP1_q_F CATCACAGTCAATGGGCCAC
mGBP1_q_R CCAAAGTCAGGACTGCGTTC
Cell line screening

The 12 clones that were screened were first imaged on our
microscope for fluorescence induction after IFNγ stimula-
tion, with the goal being to choose a clone that was repre-
sentative of the majority of the clones and had fluorescence
matching what is known about the induction of that gene.
The insertion region was also amplified by PCR and
sequenced to identify any mutations that are present at that
locus, and a clone was chosen that either had no mutation
(CXCL10 and CXCL9, which are both homozygous tags) or
else a mutation that did not affect protein function. The IRF1
tag is heterozygous. For IRF1, the tagged allele has perfect
sequencing, and the nontagged allele has a twelve base-pair
deletion that makes it so that, while the wild-type (WT)
protein ends PSIQAIPCAP*, the untagged IRF1 in our cells
ends PSIQAP*. However, this mutated allele produces the
same level of IRF1 as a WT allele by Western blot and also
induces IRF1 downstream genes to the same level as WT
IRF1 by qPCR. There were no clones with IRF1 homozy-
gously tagged, and this selected clone had the least affected
WT allele. After each knock-in, we also induced cells from
each clone with IFNγ and did qPCR for the tagged gene and
several other IFNγ-induced genes to make sure that the in-
duction matched WT induction and chose a clone where
there was minimal difference in qPCR levels in the clone with
tagged proteins versus the untagged WT cells.

Microfluidic device fabrication

SYLGARD 184 silicone elastomer base was mixed with 10%
of SYLGARD 184 silicone elastomer curing agent, degassed for
20 min, poured onto a custom wafer (72), degassed for 2 h, and
then baked at 80 �C overnight. Individual polydimethylsiloxane
chips were cut apart, had four holes punched in them, and were
cleaned with ethanol, water, and tape. Coverslips were cleaned
with heptane, methanol, and water, and then dried using
compressed air. Chips were bound to the coverslip in a UVO
binder and then baked at 80 �C overnight to bond permanently.
Two individual chips were bound to each coverslip.

Bulk plate–based assays

For bulk plate–based induction assays, used for RT-qPCR
and Western blots, a confluent 10 cm or 6 cm plate of RAW
264.7 cells was induced with the stated concentration of IFNγ.
The cells were then collected after the induction time, and
pellets were frozen at −80 �C to be used in downstream RT-
qPCR or Western blots.
RT-qPCR

Total RNA was extracted from RAW 264.7 cells using
Trizol. The RNA was then diluted to 100 ng/ml and converted
to complementary DNA (cDNA) using a High Capacity cDNA
Reverse Transcription Kit (applied biosystems, #4368814).
qPCR was then done using PowerUp SYBR Green master mix
(Thermo Fisher Scientific #A25776) on a QuantStudio 3
thermocycler. Reactions were performed in triplicate and
compared to uninduced RAW 264.7 cells to calculate the fold-
change.

Primer sequences are as follows.
Western blot

Proteins were extracted from RAW 264.7 cell pellets using
protein extraction buffer (50 mM Tris-HCl pH 8, 150 mM
NaCl, 1 mM EDTA, 1% NP-40, supplemented with protease
inhibitor cocktail (Sigma) and 1 mM phenylmethylsulfonyl
fluoride) sitting on ice for 30 min. Western blots were run with
a standard protocol. IRF1 antibody was D5E4 from Cell
Signaling Technology.

Immunofluorescence

RAW 264.7 cells were seeded onto coverslips in 24-well
plates at a density of 4 × 10

ˇ

4 cells per well. After 24 h, the
cells were induced with 10 ng/ml IFNγ at staggered times so
that at the end of the experiment, there were cells that had been
induced for 24, 8, 6, 4, 2, 1, 0.5, and 0 h. Cells were then washed
with PBS, fixed in 4% paraformaldehyde for 15 min, and per-
meabilized with 0.5% TritonX-100 for 10 min. Cells were
blocked for 30 min in 2% bovine serum albumin in 1× PBS,
which was also used as the antibody diluent. STAT1 antibody
D1K9Y (Cell Signaling Technology) was used at a concentration
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of 1:1000 and an incubation time of 2 h, followed by secondary
antibody incubation (Cell Signaling anti-rabbit IgG F(ab’)2
fragment Alexa Fluor 488 conjugate) for 1 h. Slides were
mounted in Prolong Diamond and cured overnight. Slides were
imaged on a Nikon Eclipse Ti inverted microscope with a
500 ms exposure time for the far-red nuclear marker and a
300 ms exposure time on the GFP channel for STAT1.

Imaging experiments

Plate

Cells from a confluent 10-cm plate were seeded 20 h before
the experiment in 24-well plates at a density of 4 × 10

ˇ

4 cells/
well. Immediately before imaging, cells were washed with PBS
and 500 μL of phenol-red–free DMEM with 4500 mg/L
glucose (Gibco cat# 31053028), 4.0 mM L-glutamine, 10% fetal
bovine serum, and 1% penicillin/streptomycin was added to
each well. The plate was then brought to microscope and
imaged for 2 h before addition of stimulus and then for 48 h
after. Stimulus was added with a micropipette while the plate
remained on the microscope stage.

Microfluidic

Each chip on the coverslip was vacuumed for 3 min before
cell loading. A confluent 10-cm plate of RAW 264.7 cells was
washed with PBS, collected in DMEM, centrifuged at 200g for
3 min, resuspended in 3 ml of phenol-red–free DMEM, and
loaded into the prevacuumed microfluidic device using vac-
uum loading to a density of �20 to 30 cells/trap. Each chip
with cells loaded was attached to a syringe with phenol-red-
free DMEM as well as a waste tubing and incubated in a
standard tissue culture incubator at 37 �C, 5% CO2, with
humidity for 20 h between seeding and setting up on the mi-
croscope to allow cells to adhere to the coverslip. All syringes
have a manual turn-valve controlling output from the syringe
into the attached PTFE tubing (Cole-Parmer EW-06417-21),
and this switching was controlled manually. Immediately
before setting up on the microscope, a second syringe con-
taining phenol-red–free DMEM with 10 ng/ml IFNγ was
attached to the chip but closed so that the cells continue to be
in a no-IFNγ environment. The syringes and chip were then
set up on the microscope, where the syringes sit outside the
environmental chamber at 12 cm above the chip, and the waste
lines also sit outside the chamber at 30 cm below the chip. The
chip is in an environmental chamber controlling the temper-
ature at 37 �C, 5% CO2, and humidity. The image ROI was set
at 300 × 300 pixels, which corresponds to the size of one trap
so that every image contains only one trap. Thirteen traps for
each chip were chosen for imaging and were chosen to have a
good number of nonclumped cells and to not image two
adjacent traps (this minimizes phototoxicity). Images were
taken for at least 2 h before onset of stimulation. At the onset
of stimulation, the valve on the DMEM + IFNγ syringe was
opened and the valve on the DMEM-only syringe was closed,
and at the end of stimulation, the DMEM-only syringe was
opened and the DMEM+IFNγ syringe was closed. Waste was
collected in a 50-mL conical tube and measured to confirm
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that there was proper flow through the device during the
experiment, which is about 0.5 ml/h. Experiments without the
correct amount of flow were discarded.

All

Cells were imaged on a Nikon Eclipse Ti inverted micro-
scope at 37 �C, 5% CO2, with humidity. Phase and iRFP nu-
clear marker images were taken every 10 min, while
fluorescence images were taken every 60 min to minimize
phototoxicity. Images were taken with a 20×/0.45 NA objective
using the perfect focus setting and a Photometrics Evolve
512Delta EMCCD camera using Nikon Elements software
(https://www.microscope.healthcare.nikon.com/products/
software/nis-elements). Exposure times were 500 ms for iRFP,
500 ms for mCherry, 300 ms for SYFP2, and 100 ms for
mCerulean.

Image processing

Images were exported from the Nikon Elements software as
multipage tifs and imported into CellProfiler. A CellProfiler
pipeline was used to subtract the background using a rolling-
ball algorithm. Nuclei were then identified from the iRFP
nuclear marker images using the minimum cross entropy al-
gorithm for the microfluidic chip and the Otsu algorithm for
the 24-well plate, and a mask was made from these segmen-
tations. The images taken from plate experiments and
microfluidic experiments differ in their level of background
and sharpness of the edges of the nuclei, which was why
different segmentation algorithms worked best for each type of
experiment and why we chose to use two different algorithms.
Except in fitting our ODE model, the plate and microfluidic
data are not compared against each other, and in the ODE
modeling, there is an introduction of a scaling factor (see
Modeling section) to make the plate and microfluidic values
comparable. Fluorescence was quantified in each channel for
each nucleus mask, and composite images were created with
the object numbers overlaid on each fluorescence channel for
manual confirmation of fluorescence and tracking. The images
and a spreadsheet with the data were exported. CustomMatlab
scripts were then used to organize the images into folders. We
used u-track (91) implemented in Matlab to track the nuclei,
and the tracking data were then converted into a format where
each trace consists of the mean fluorescence intensity value for
that cell at each timepoint. We then took only traces that are
complete over the first 200 images of the experiment (�33 h
total, �31 h after IFNγ addition) and analyzed these further.
All cells analyzed have strong trackable nuclear marker signal,
indicating that they are alive for the duration of the
experiment.

Quantification and statistical analysis

Replicates

For concentration experiments, all concentrations were run
in the same plate, and these plates were run in triplicate. One
representative plate is used for all analysis shown. Each con-
dition for plate experiments is a compilation of three wells of
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the 24-well plate and has 578 to 1016 cells. For microfluidic
duration experiments, all conditions were run at least five
times, with one chip on the coverslip running the experimental
condition and the other chip receiving 4 h of stimulus as a
control between days and chips. For each duration modulation
condition, we combined all cells from 2 to 3 different runs of
that condition and used that as the data for that condition.
This results in each condition including 459 to 921 cells. The
statistics on these combined datasets match the statistics for
each individual run that makes up the dataset. These runs were
chosen since they are representative of all runs and all had
their paired 4-h control looking similar. For the microfluidic
two-pulse experiment, this experiment was run three times
and a representative run was chosen to show in these figures.
The representative run chosen includes 367 cells.
General feature extraction

Features were extracted from all cells that had trajectories
complete over the entire 33 h of the experiment. Maximum
amplitude for all genes was calculated as the maximum
amplitude over the first 24 h after IFNγ addition minus the
mean of the two first images before IFNγ was added (which we
suppose to be noise/basal gene expression and thus unaffected
by IFNγ).

Lag time was calculated as the first time at which the
fluorescence value was 1.5 times higher than that cell’s baseline
level (defined as the mean of the first two images before IFNγ
was added as well as the image right when IFNγ was added)†.
In all cells, the values of these first three images (the two before
IFNγ addition and the one right when IFNγ was added) were
very similar.

Width for IRF1 was defined as the width at half of the
maximum amplitude defined as the difference between the
maximum value and the baseline expression. As CXCL10 and
CXCL9 are transcriptional reporters and therefore do not
represent endogenous decay rates, we do not calculate width
for them.

Histogram boxplots were created using distributionPlot
Jonas (2017). Violin Plots for plotting multiple distributions
(distributionPlot.m) (https://www.mathworks.com/matlabce
ntral/fileexchange/23661-violin-plots-for-plotting-multiple-dis
tributions-distributionplot-m), MATLAB Central File Ex-
change (Retrieved April 28, 2023) with bin edges held constant
for all conditions in a plot, but each histogram scaled indi-
vidually, so the shape of the histograms is comparable but
individual bin height is not comparable. This was chosen
because having individual bin height be comparable led to
overlapping histograms between conditions, as in some cases
† For CXCL10, we can also extract lag time from these curves by fitting them
to y = (tanh(a*x+b))*c+d and defining lag time as − ð1þbÞ= a, which is
the time when a line with slope a ⋅ c through the inflection point in-
tersects with the baseline expression level. However, here do not use this
calculation since it does not apply to IRF1 and CXCL9. Comparing these
two methods of calculating lag time for CXCL10 provides very similar
results. For the two-pulse experiment feature extraction, we consider
responding cells to be cells that fit this tanh function well and
nonresponding cells to fit it poorly.
there was one condition with the majority of its density in the
smallest bin.

For the two-pulse experiment, maximum amplitude was
taken to be the maximum amplitude from the time of IFNγ
onset to 13 h after IFNγ onset (4 h of IFNγ + 9 h of time off)
minus the expression at the time of IFNγ onset. This was
chosen so that each pulse would be measured independently
for itself and previous pulses would not contribute to mea-
surements for later pulses.

CXCL10 feature extraction

The slope and pulse amplitude (used only in two-pulse
experiment) for CXCL10 are extracted by fitting the initial
CXCL10 rise (defined as the first 13 h after IFNγ addition) to
y ¼ ðtanhða ⋅xþbÞÞ ⋅ cþd and defining the slope as a ⋅ c and
the pulse amplitude as 2 ⋅ c.

Sibling cells

Siblings are manually verified that they are in fact siblings,
and their division time is defined as the first time when the
cells are two separate cells. The sibling cells used in this
analysis received 10 ng/ml IFNγ stimulus in a 24-well plate. In
this experiment, cells were imaged for 11 h prior to addition of
IFNγ and siblings were only used if they divided in that 11 h
prior to IFNγ addition.

Cell cycle

Cells were imaged for 11 h prior to addition of IFNγ
(addition of IFNγ being defined as time 0), and only cells that
divided at some point during the experiment either before or
after IFNγ addition were included in this analysis to define
their cell cycle stage. Cells were placed into bins based on
when they divided, with bin 1 being hours −11 to −7, bin 2
being hours −6 to −1, bin 3 being hours 0 to 4, bin 4 being
hours 5 to 9, bin 5 being hours 10 to 16, and bin 6 being hours
17 to 22. This corresponds roughly to bin 1 being in G1/S
when IFNγ was added, bin 2 being in G1, bin 3 being in G2,
bin 4 being in S, bin 5 being in G1, and bin 6 being in G2. From
observing cells that divided twice during the experiment, we
see that cell cycle length for most cells is about 17 h but in
some cells can be as long as 26 h.

Calculation of CV

The CV is defined as the SD of a distribution divided by its
mean. We calculate general CV (in the main figures) by taking
the CV of the expression level of all cells at each timepoint and
plotting this result over time for all conditions. Calculation of
CV for individual features was done by taking the SD of that
feature in all cells divided by its mean.

Modeling

The block diagram of our nonadaptive model is shown in
Figure 4A. In addition to the TF, for each gene of interest, it
includes five species that are involved in eight reactions:
mRNA (M), protein (P), and three possible states of the
J. Biol. Chem. (2023) 299(10) 105230 15
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chromatin at the locus of each gene of interest: closed (C),
open-uninitiated (OU), and open-initiated (OI). The transition
rates among the chromatin states and the rates of synthesis
and degradation of both mRNA and protein are shown in
Figure 4A. We assume that mRNA synthesis can occur only
when chromatin is in the open-initiated state. For simplicity,
we also assume that the chromatin cannot close when it is in
the initiated state. We chose to develop a three-state model
based on the general understanding that both chromatin
opening and transcription initiation require TF binding, and
evidence in the literature that for IRF1, CXCL10, and CXCL9,
IFNγ induction leads to STAT1 binding at their promoters (50,
51, 92, 93). The literature also shows that placement of
H3K27ac active enhancer marks at associated enhancers re-
quires STAT1 to be present, supporting our model that
STAT1 is also required for the chromatin-opening step (51).

The concentration of the TF is a nonlinear function of the
stimulus concentration [IFNγ],

½TF� ¼ tanhðαð½IFNγ� þKdÞÞ (1)

Chromatin-opening rate and initiation rate are both pro-
portional to [TF], while closing (k2) and deinitiation (k4) rates
are constant.

In the generalized model that includes stimulus adaptation,
we added two more species, regulatory mRNA (regM) and
regulatory protein (regP), and five more reactions for the
transcriptional negative feedback loop that suppresses the TF,
see Figure 4B.

For deterministic modeling of the system without adapta-
tion, we introduce mRNA and protein concentrations ([M]
and [P], respectively) and the fraction of chromatin loci to be
in each of the three states ([C], [OU], and [OI], respectively).
The set of the ODEs for these variables reads as follows:

d½C�
dt

¼ k2 ½OU �−k1½TF �½C� (2)

d½OU �
dt

¼ k1½TF �½C�−k2½OU �−k3½TF �½OU�þk4½OI� (3)

d½OI�
dt

¼ k3½TF�½OU �−k4½OI� (4)

d½M�
dt

¼ k5½OI�−δM½M� (5)

d½P�
dt

¼ k6½M�−δP½P� (6)

Because there are two chromatin loci for each gene, there is
a conservation [C]+[OU]+[OI] = 2, and one of these differ-
ential equations can be eliminated.
16 J. Biol. Chem. (2023) 299(10) 105230
The deterministic model with adaptation involves, in addi-
tion to the five equations above, the following two differential
equations

d½regM�
dt

¼ aregM
½TF �c2

1þ½TF�c2−δregM½regM� (7)

d½regP�
dt

¼ aregP½regM�−δregP½regP� (8)

and the algebraic equation for the TF concentration that re-
places (Equation 1):

½TF � ¼ tanhðαð½IFNγ�þKdÞÞ
1þ

�
½regP �
regthr

�c1 (9)

We used these deterministic models for all three genes of
interest (IRF1, CXCL10, and CXCL9). To fit the model, we
used the data for the mean values of the fluorescence for each
gene at each time in every concentration and duration con-
dition. Since the conversion factor between the concentrations
of proteins and the measured levels of fluorescence can differ
between fluorescent proteins, before fitting, we rescaled the
data such that the mean expression peaks at 40. The amplitude
of fluorescence in the plate experiments (used for the con-
centration experiments) is higher than in the microfluidic
device (used for duration experiments), so we scaled the
microfluidic data based on the fact that the 10 ng/ml IFNγ
plate condition should be equivalent to the 10 ng/ml constant
IFNγ microfluidic condition. We calculated the scaling factor
for each gene by dividing the maximum fluorescence in the
10 ng/ml IFNγ plate condition by the maximum fluorescence
in the 10 ng/ml IFNγ constant microfluidic condition and then
multiplied all microfluidic data values for that gene by this
scaling factor. The scaling factor for IRF1 was 1.7757, for
CXCL10 was 3.1105, and for CXCL9 was 3.3009. We used the
MATLAB function fminsearchbnd for constrained optimiza-
tion John D’Errico (2012), fminsearchbnd, fminsearchcon
(https://www.mathworks.com/matlabcentral/fileexchange/827
7-fminsearchbnd-fminsearchcon), MATLAB Central File Ex-
change (Retrieved April 13, 2023) to fit the models for each of
the three proteins of interest (IRF1, CXCL10, CXCL9). The
best fit parameters for each of these cases are given in
Tables S2 and S3.

We chose a simplified model architecture for the adaptation
circuit compared to the main gene expression model because
we have very little data with which to fit parameters for the
negative regulator and so using the full ODE model would
involve introducing additional poorly constrained parameters
and variables.

When we attempted to simplify our model by making only
one step dependent on TF or by combining the two reversible
TF-dependent steps into one reversible TF-dependent step,
the model was not able to fit the dynamical CXCL10 and
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CXCL9 data as well. The two-step activation also provides the
simplest way to have delayed expression with a smooth tran-
sition to a steep slope while also fitting the concentration- and
duration-modulation responses. IRF1 could be modeled well
by one reversible TF-dependent step because chromatin
opening for IRF1 is very fast, but we chose to also model IRF1
with the two-step model to maintain the same model structure
for all genes.

We note that there is a partial indeterminacy in the pa-
rameters obtained from fitting the deterministic model ‡ and
parameters in Tables S2 and S3 were chosen to be in the range
of plausible values and such that the stochastic simulations
matched the observed variability.

For the stochastic simulations, we used the same species and
reactions as in the deterministic models. We employed the
direct Gillespie algorithm (75) to compute the numbers of
molecules of each species as a function of time. We
acknowledge that the Gillespie algorithm is only an approxi-
mate implementation of stochastic biochemical reactions in
nonstationary environments (since we model experiments in
which input TF changes with time), but since the characteristic
reaction time in our model is much shorter than the timescale
on which TF changes, this approximation is quite accurate.
Since our fluorescence data contain arbitrary scaling factors
with respect to the actual protein concentrations inside the
cells, the rate parameters of the deterministic model also have
arbitrary scaling factors. However, propensities in stochastic
models determine not only the average number of molecules
produced but also the level of random fluctuations around
these averages. To determine the appropriate scaling for the
stochastic model, we fit the deterministic model using a range
of possible scaling factors and then used these parameters to
perform the stochastic simulation and compare the distribu-
tions of maximal single-cell protein expression levels between
the simulation and the experimental data. The best fit between
these experimental and simulation distributions was obtained
when the parameters were scaled to produce about 3 to 6
molecules of mRNA and 40 molecules of protein at the peak
for each gene. After this scaling was fixed for the stochastic
model, we used that set of parameters for the deterministic
model as well, so that the deterministic models could be
directly compared with stochastic simulations. This scaling
means that the unit concentration in the deterministic model
corresponds to one molecule per cell volume in the stochastic
model. After generating multiple stochastic runs (�1000 per
each experimental condition), we performed statistical analysis
of simulation data by computing the mean values, SDs, and the
distributions of selected features of the runs (maximum
amplitude, lag time, etc.).
‡ Given only a single species (fluorescent protein) for fitting, the dynamics
for this species can be invariant with respect to suitable rescaling of pairs
of reaction parameters, for example, by increasing translation rate and
simultaneously decreasing transcription rate by the same factor. Using
constraints on the expected rates of synthesis and degradation of mRNA
and proteins, we were able to narrow down this degeneracy, but to
completely eliminate it, more detailed multivariate data would be
necessary.
Data availability

Raw image files and fluorescence quantification are available
from the Hao lab upon request.
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